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Abstract

The Bernoulli sieve is an infinite occupancy scheme obtained by allocating
the points of a uniform [0, 1] sample over an infinite collection of intervals made
up by successive positions of a multiplicative random walk independent of the
uniform sample. We prove a law of the iterated logarithm for the number of
non-empty (occupied) intervals as the size of the uniform sample becomes large.
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1 Introduction

Let R := (Rk)k∈N0 be a multiplicative random walk defined by

R0 := 1, Rk :=
k∏
i=1

Wi, k ∈ N

where (Wk)k∈N are independent copies of a random variable W taking values in the
open interval (0, 1). Also, let (Uj)j∈N be independent random variables which are
independent of R and have the uniform distribution on [0, 1]. A random occupancy
scheme in which ‘balls’ U1, U2, etc. are allocated over an infinite array of ‘boxes’
(Rk, Rk−1], k ∈ N is called Bernoulli sieve. The Bernoulli sieve was introduced in [4]
and further investigated in numerous articles which can be traced via the references
given in the recent work [1]. We also refer to [1] for more details concerning the
Bernoulli sieve including the origin of this term.

Since a particular ball falls into the box (Rk, Rk−1] with random probability

p∗k := Rk−1 −Rk = W1W2 · . . . ·Wk−1(1−Wk), (1.1)
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the Bernoulli sieve is also the classical infinite occupancy scheme with the random
probabilities (p∗k)k∈N. In this setting, given the random probabilities (p∗k), the balls
are allocated over the boxes (R1, R0], (R2, R1], . . . independently with probability p∗j
of hitting box j. Assuming that the number of balls equals n, denote by K∗n the
number of non-empty boxes.

Under the condition σ2 := Var| logW | ∈ (0,∞) (which implies that µ :=
E| logW | <∞) it was shown in Corollary 1.1 of [5] that, as n→∞,

K∗[en] − µ
−1 ∫ n

0 P{| log(1−W )| ≤ y}dy√
σ2µ−3n

converges in distribution to the standard normal law. The same conclusion can also
be derived from a functional limit theorem obtained recently in [1]. The purpose of
the present article is to obtain a law of the iterated logarithm that corresponds to
the aforementioned central limit theorem.

For a family or a sequence (xt) denote by C((xt)) the set of its limit points.

Theorem 1.1. Assume that σ2 ∈ (0,∞) and that

E| log(1−W )|a <∞ (1.2)

for some a > 0. Then

C

((K∗[en] − µ−1 ∫ n0 P{| log(1−W )| ≤ y}dy√
2σ2µ−3n log logn

: n ≥ 3

))
= [−1, 1] a.s.

In particular,

lim sup (lim inf)n→∞
K∗[en] − µ

−1 ∫ n
0 P{| log(1−W )| ≤ y}dy
√

2n log logn
= +(−)σµ−3/2 a.s.

Remark 1.2. Below we shall show that Theorem 1.1 is a consequence of Corollary
2.2 and Proposition 2.3. Condition (1.2) is only needed to ensure the applicability
of Proposition 2.3. We do not know whether Proposition 2.3, hence Theorem 1.1,
still hold true without condition (1.2).

The proof of Theorem 1.1 given in Section 2 relies upon a number of auxiliary
results that are stated and proved in Section 3.

2 Proof of Theorem 1.1

Let (ξk, ηk)k∈N be a sequence of i.i.d. two-dimensional random vectors with generic
copy (ξ, η) where both ξ and η are positive. No condition is imposed on the depen-
dence structure between ξ and η. Set

N(x) :=
∑
k≥0

1{Sk+ηk+1≤x}, x ≥ 0

where (Sn)n∈N0 is the zero-delayed ordinary random walk with increments ξn for
n ∈ N, i.e., S0 = 0 and Sn = ξ1 + . . .+ ξn, n ∈ N.

Put ρ∗(x) :=
∑

k≥0 1{p∗k≥1/x} for x > 0. It is natural to call ρ∗(x) the number
of ‘large boxes’ in the Bernoulli sieve. Relevance of N(x) to the present context is
justified by the equality

ρ∗(x) = N∗(log x) (2.1)
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where the random variable N∗(x) corresponds to ξk = | logWk| and ηk = | log(1 −
Wk)| for k ∈ N.

Our strategy is as follows. First, we show in Corollary 2.2 that the number
of occupied boxes K∗n is well-approximated in the a.s. sense by ρ∗(n). A similar
approximation in the sense of distributional convergence was established in [5] and
[1]. We would like to stress that proving the a.s. approximation is more delicate and
calls for an additional argument. Second, we prove in Proposition 2.3 a law of the
iterated logarithm for N(x) defined in terms of arbitrary perturbed random walk.
In view of (2.1) these two results are sufficient to complete the proof of Theorem
1.1.

We consider the infinite occupancy scheme in which balls are allocated inde-
pendently with probability pk of hitting box k. Denote by Kn be the number of
occupied boxes in the scheme when n balls have been thrown. For n ∈ N set
Θn :=

∑
k≥1 e

−npk 1{npk≥1} and ∆n := n
∑

k≥1 pk 1{npk<1}.

Lemma 2.1. Suppose that∑
n≥1

n−2Θ4
[en] <∞ and

∑
n≥1

n−2∆4
[en] <∞. (2.2)

Then
lim
n→∞

n−1/2
(
K[en] −

∑
k≥1

1{[en]pk≥1}
)

= 0 a.s. (2.3)

Proof. We shall use a representation Kn =
∑

k≥1 1{Zn,k≥1} where Zn,k is the number
of balls that fall in box k. Observe that the random variable Zn,k has the binomial
distribution with parameters n and pk. With this at hand we can write∣∣Kn −

∑
k≥1

1{npk≥1}
∣∣ ≤∑

k≥1
1{Zn,k=0} 1{npk≥1}+

∑
k≥1

1{Zn,k≥1} 1{npk<1} .

Let (Ak)k∈N be a sequence of sets which satisfy
∑

k≥1 1Ak
< ∞. The multinomial

theorem tells us that

(
∑
k≥1

1Ak
)4 =

∑
k≥1

1Ak
+14

∑
1≤j<i

1Aj 1Ai

+ 36
∑

1≤j<i<l
1Aj 1Ai 1Al

+24
∑

1≤j<i<l<m
1Aj 1Ai 1Al

1Am . (2.4)

Further, for m ∈ N and distinct i1, . . . , im ∈ N

P{Zn, i1 = 0, . . . , Zn, im = 0} = (1− pi1 − . . .− pim)n ≤ e−n(pi1+...+pim ). (2.5)

Even though there is a precise formula

P{Zn, i1 ≥ 1, . . . , Zn, im ≥ 1} = 1−
m∑
k=1

(1− pik)n +
∑

1≤k<l≤m
(1− pik − pil)

n

+ . . .+ (−1)m(1− pi1 − . . .− pim)n,

a crude upper bound is of greater use for our needs:

P{Zn, i1 ≥ 1, . . . , Zn, im ≥ 1} ≤ n(n−1) · . . . ·(n−m+1)pi1 · . . . ·pim ≤ nmpi1 · . . . ·pim .
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While the product pi1 ·. . .·pim is the probability of the event that the boxes i1, . . . , im
turn out occupied when throwing m balls, the product n(n− 1) · . . . · (n−m+ 1) =
m!
(
n
m

)
is the number of ways to allocate m balls out of n into the boxes i1, . . . , im.

Using (2.4) and then (2.5) we obtain

E
(∑
k≥1

1{Zn,k=0} 1{npk≥1}

)4

≤
∑
k≥1

e−npk 1{npk≥1}+14
∑

1≤j<i
e−npj 1{npj≥1} e

−npi 1{npi≥1}

+ 36
∑

1≤j<i<l
e−npj 1{npj≥1} e

−npi 1{npi≥1} e
−npl 1{npl≥1}

+ 24
∑

1≤j<i<l<m
e−npj 1{npj≥1} e

−npi 1{npi≥1} e
−npl 1{npl≥1} e

−npm 1{npm≥1}

≤ Θn + 7Θ2
n + 6Θ3

n + Θ4
n.

This in combination with (2.2) entails limn→∞ n−1/2
∑

k≥1 1{Z[en],k=0} 1{[en]pk≥1} =
0 a.s. by the Borel-Cantelli lemma.

Arguing similarly we infer

E
(∑
k≥1

1{Zn,k≥1} 1{npk<1}

)4

≤ n
∑
k≥1

pk 1{npk<1}+14n2
∑

1≤j<i
pj 1{npj<1} pi 1{npi<1}

+ 36n3
∑

1≤j<i<l
pj 1{npj<1} pi 1{npi<1} pl 1{npl<1}

+ 24n4
∑

1≤j<i<l<m
pj 1{npj<1} pi 1{npi<1} pl 1{npl<1} pm 1{npm<1}

≤ ∆n + 7∆2
n + 6∆3

n + ∆4
n

which in combination with (2.2) proves limn→∞ n−1/2
∑

k≥1 1{Z[en],k≥1} 1{[en]pk<1} =
0 a.s. by another appeal to the Borel-Cantelli lemma.

Corollary 2.2.
lim
n→∞

n−1/2
(
K∗[en] − ρ

∗(en)
)

= 0 a.s.

Proof. Recalling (2.1) we have

0 ≤ ρ∗(en)− ρ∗([en]) = N∗(n)−N(log[en]) ≤ N∗(n)−N∗(n− 1)

for large enough n. By Lemma 3.4(b), the right-hand side divided by n1/2 converges
to zero a.s. Hence, it suffices to prove that

lim
n→∞

n−1/2
(
K∗[en] − ρ

∗([en])
)

= 0 a.s. (2.6)

We write

∆∗n := n
∑
k≥1

p∗k 1{np∗k<1} = n

∫
(n,∞)

x−1dρ∗(x) =

∫
(1,∞)

x−1d(ρ∗(nx)− ρ∗(n))

=

∫ ∞
1

x−2(ρ∗(nx)− ρ∗(n))dx
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having utilized integration by parts and the asymptotics ρ∗(x) = O(log x) as x→∞
a.s. (see Lemma 3.4(a)) for the last step. Further, using convexity of x 7→ x4, x > 0
and Corollary 3.3 yields

E(∆∗n)4 = E
(∑
k≥2

∫ k

k−1
x−2(ρ∗(nx)− ρ∗(n))dx

)4

≤ E
(∑
k≥2

(ρ∗(nk)− ρ∗(n))((k − 1)k)−1
)4

≤
∑
k≥2

E(ρ∗(nk)− ρ∗(n))4((k − 1)k)−1 ≤ C
∑
k≥2

(log k)4((k − 1)k)−1 <∞

which proves ∑
n≥1

n−2E(∆∗[en])
4 <∞.

Arguing similarly we obtain

Θ∗n :=
∑
k≥1

e−np
∗
k 1{np∗k≥1} =

∫
[1,n]

e−n/xdρ∗(x) =

∫ n

1
e−x(ρ∗(n)− ρ∗(n/x))dx

and

E(Θ∗n)4

= E
( n∑
k=2

∫ k

k−1
e−x(ρ∗(n)− ρ∗(n/x))dx

)4

≤ (e−1 − e−n)4E
(∑
k≥2

(ρ∗(n)− ρ∗(n/k))(e−k+1 − e−k)(e−1 − e−n)−1
)4

≤ (e− 1)(e−1 − e−n)3
∑
k≥2

E(ρ∗(n)− ρ∗(n/k))4e−k ≤ C
∑
k≥2

(log k)4e−k <∞.

Thus, ∑
n≥1

n−2E(Θ∗[en])
4 <∞.

Invoking now Lemma 2.1 enables us to conclude that (2.6) holds conditionally on
(p∗k)k∈N, hence also unconditionally. The proof of Corollary 2.2 is complete.

Proposition 2.3. Suppose that s2 := Var ξ ∈ (0,∞) and Eηa <∞ for some a > 0.
Then

C

((
N(n)− m−1

∫ n
0 F (y)dy√

2s2m−3n log log n
: n ≥ 3

))
= [−1, 1] a.s.

where m := Eη <∞ and F (y) := P{η ≤ y} for y ≥ 0.

Proof. Put

ν(x) :=
∑
k≥0

1{Sk≤x}, x ≥ 0.

It is known (see the proof of Theorem 3.2 in [1]) that

lim
n→∞

n−1/2
(
N(n)−

∫
[0, n]

F (n− y)dν(y)

)
= 0 a.s.
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whenever Eηa < ∞ for some a > 0 (the finiteness of Var ξ is not needed). Thus, it
remains to prove that

C

((∫
[0, n] F (n− y)d(ν(y)− m−1y)√

2s2m−3n log log n
: n ≥ 3

))
= [−1, 1] a.s. (2.7)

Put a(t) :=
√

2s2m−3t log log t for t ≥ 3. Integrating by parts yields∫
[0, n] F (n− y)d(ν(y)− m−1y)− P{η = n}

a(n)
=

∫
[0, n)

ν(n− y)− m−1(n− y)

a(n)
dF (y)

=

∫
[0, δ]

ν(n− y)− m−1(n− y)

a(n)
dF (y)

+

∫
(δ, n)

ν(n− y)− m−1(n− y)

a(n)
dF (y)

=: Z1(n) + Z2(n)

for any fixed δ ∈ (0, n]. We have a.s.

ν(n)− m−1n

a(n)
F (δ) − ν(n)− ν(n− δ)

a(n)
F (δ)

≤ Z1(n)

≤ ν(n)− m−1n

a(n)
F (δ) +

m−1δ

a(n)
F (δ).

Fix any x0 ∈ [−1, 1]. According to (3.6), there exists a sequence (nk) satisfying
limk→∞ nk =∞ a.s. and limk→∞(ν(nk)−m−1nk)/a(nk) = x0 a.s. By Lemma 3.4(b),
limk→∞(ν(nk)− ν(nk − δ))/a(nk) = 0 a.s. Therefore, limδ→∞ limk→∞ Z1(nk) = x0
a.s. Further,

−
supy∈[0, n] |ν(y)− m−1y|

a(n)
(F (n−)− F (δ))

≤
infy∈[0, n−δ] (ν(y)− m−1y)

a(n)
(F (n−)− F (δ))

≤ Z2(n)

≤
supy∈[0, n] |ν(y)− m−1y|

a(n)
(F (n−)− F (δ)).

Using (3.7) we conclude that

limδ→∞lim supk→∞Z2(nk) = limδ→∞lim infk→∞Z2(nk) = 0 a.s.

The proof of (2.7) is complete.

Now Theorem 1.1 follows from Corollary 2.2 in combination with a specialization
of Proposition 2.3 for ρ∗(en) = N∗(n) which reads

C

((
ρ∗(en)− µ−1

∫ n
0 P{log |1−W | ≤ y}dy√

2σ2µ−3n log log n
: n ≥ 3

))
= [−1, 1] a.s.
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3 Auxiliary results

The following result can be found in the proof of Lemma A.3 in [1].

Lemma 3.1. Let G : [0,∞)→ [0,∞) be a locally bounded function. Then, for any
l ∈ N

E
(∑
k≥0

G(t− Sk)1{Sk≤t}

)l
≤
( [t]∑
j=0

sup
y∈[j, j+1)

G(y)

)l
E(ν(1))l, t ≥ 0. (3.1)

Lemma 3.2. For 0 ≤ y < x with x − y > 1 E(N(x) − N(y))4 ≤ C(x − y)4 for a
positive constant C which does not depend on x and y.

Proof. Throughout the proof we assume that x and y satisfy the assumptions of the
lemma.

We start with

E(N(x)−N(y))4 ≤ 8(E(X(x, y))4 + E(Y (x, y))4)

where

X(x, y) :=
∑
j≥0

(
(1{Sj+ηj+1≤x}−F (x− Sj)1{Sj≤x})

− (1{Sj+ηj+1≤y}−F (y − Sj)1{Sj≤y})
)
;

Y (x, y) :=
∑
j≥0

(
F (x− Sj)1{Sj≤x}−F (y − Sj)1{Sj≤y}

)
=

∫
[0,y]

(ν(x− z)− ν(y − z))dF (z) +

∫
(y,x]

ν(x− z)dF (z);

F (z) = P{η ≤ z} is the distribution function of η and ν(z) =
∑

k≥0 1{Sk≤z} for
z ≥ 0.

We intend to show that E(X(x, y))4 ≤ C(x − y)2. With x, y ≥ 0 fixed, X(x, y)
equals the terminal value of the martingale (R(k),Fk)k∈N0 where R(0) := 0,

R(k) :=
k−1∑
j=0

(
(1{Sj+ηj+1≤x}−F (x− Sj)1{Sj≤x})

− (1{Sj+ηj+1≤y}−F (y − Sj)1{Sj≤y})
)
,

F0 := {Ω,�} and Fk := σ((ξj , ηj) : 1 ≤ j ≤ k). We use the Burkholder-Davis-
Gundy inequality (Theorem 11.3.2 in [3]) to obtain, for any l ∈ N

E(X(x, y))2l

≤ Cl

(
E
(∑
k≥0

E
(
(R(k + 1)−R(k))2|Fk

))l
+
∑
k≥0

E
(
R(k + 1)−R(k)

)2l)
=: Cl(I1 + I2)

for a positive constant Cl. We shall show that

I1 ≤ 2lE(ν(1))l(b(x− y))l (3.2)
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where b(t) :=
∑[t]+1

k=0 (1− F (k)) for t ≥ 0 and that

I2 ≤ 22lEν(1)b(x− y). (3.3)

These estimates serve our needs because b(t) ≤ [t] + 2 ≤ 3t whenever t > 1.
Proof of (3.2). We first observe that∑

k≥0
E
(
(R(k + 1)−R(k))2|Fk

)
=

∫
(y, x]

F (x− z)(1− F (x− z))dν(z)

+

∫
[0, y]

(F (x− z)− F (y − z))(1− F (x− z) + F (y − z))dν(z)

≤
∫
(y, x]

(1− F (x− z))dν(z) +

∫
[0, y]

(F (x− z)− F (y − z))dν(z)

whence

I1 ≤ 2l−1
(
E
(∫

(y, x]
(1−F (x− z))dν(z)

)l
+E

(∫
[0, y]

(F (x− z)−F (y− z))dν(z)

)l)
having utilized (u + v)l ≤ 2l−1(ul + vl) for nonnegative u and v. Using Lemma 3.1
with G(z) = (1−F (z))1[0, x−y)(z) and G(z) = F (x− y+ z)−F (z), respectively, we
obtain

E
(∫

(y, x]
(1− F (x− z))dν(z)

)l
= E

(∫
[0, x]

(1− F (x− z))1[0, x−y)(x− z)dν(z)

)l
≤ E(ν(1))l

( [x]∑
n=0

sup
y∈[n, n+1)

((1− F (z))1[0, x−y)(z))

)l

≤ E(ν(1))l
( [x−y]∑

n=0

(1− F (n))

)l
≤ E(ν(1))l(b(x− y))l (3.4)

and

E
(∫

[0, y]
(F (x− z)− F (y − z))dν(z)

)l
≤ E(ν(1))l

( [y]∑
n=0

sup
z∈[n, n+1)

(F (x− y + z)− F (z))

)l

≤ E(ν(1))l
( [y]∑
n=0

(1− F (n))−
[y]∑
n=0

(1− F (x− y + n+ 1))

)l

≤ E(ν(1))l
( [y]∑
n=0

(1− F (n))−
[y]+2∑
n=0

(1− F (n)) +

[x−y]+1∑
n=0

(1− F (n))

)l
≤ E(ν(1))l(b(x− y))l. (3.5)

Combining (3.4) and (3.5) for l = 2 yields (3.2).
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Proof of (3.3). Let us calculate

E((R(k + 1)−R(k))4|Fk)
≤ 8((1− F (x− Sk))4F (x− Sk) + (F (x− Sk))4(1− F (x− Sk)))1{y<Sk≤x}

+ ((1− F (x− Sk) + F (y − Sk))4(F (x− Sk)− F (y − Sk))
+ (F (x− Sk)− F (y − Sk))4(1− F (x− Sk) + F (y − Sk)))1{Sk≤y}

≤ 8((1− F (x− Sk))1{y<Sk≤x}+(F (x− Sk)− F (y − Sk))1{Sk≤y}).

Therefore,

I2 ≤ 8

(
E
∫
(x,y]

(1− F (x− z))dν(z) + E
∫
[0, y]

(F (x− z)− F (y − z))dν(z)

)
.

Using now formulae (3.4) and (3.5) with l = 1 yields (3.3).
Passing to Y (x, y) we have

E(Y (x, y))4 ≤ 8

(
E
(∫

[0, y]
(ν(x− z)− ν(y − z))dF (z)

)4

+ E(ν(x− y))4
)
.

Using the fact that z−4E(ν(z))4 converges as z →∞ to a nonnegative constant (see
Theorem 5.1 on p. 57 in [6]) we infer E(ν(x−y))4 ≤ C(x−y)4 (recall that x−y > 1).
Finally,

E
(∫

[0, y]
(ν(x− z)− ν(y − z))dF (z)

)4

≤ (F ([y] + 1))4E
( [y]∑
k=0

(ν(x− k)− ν(y − k − 1))
F (k + 1)− F (k)

F ([y] + 1)

)4

≤
[y]∑
k=0

E(ν(x− k)− ν(y − k − 1))4(F (k + 1)− F (k))

≤ E(ν(x− y + 1))4 ≤ C(x− y)4

where we have used distributional subadditivity of ν(z) (see formula (5.7) on p. 58
in [6]) for the penultimate inequality.

In view of (2.1) the next result is an immediate consequence of Lemma 3.2.

Corollary 3.3. E(ρ∗(x) − ρ∗(y))4 ≤ C(log(x/y))4 for a positive constant C which
does not depend on x and y.

Lemma 3.4. (a) N(x) = O(x) a.s. as x→∞;
(b) For any c > 0 and any fixed δ > 0 limn→∞ n

−c(N(n)−N(n− δ)) = 0 a.s. and
limn→∞ n

−c(ν(n)− ν(n− δ)) = 0 a.s.

Proof. (a) Since the ηk is a.s. positive, it follows that N(x) ≤ ν(x) a.s. It remains
to note that ν(x) = O(x) a.s. as x→∞ by the strong law of large numbers for the
renewal processes, see Theorem 5.1 on p. 57 in [6].
(b) The limit relation that involves N can be found in the proof of Proposition 3.3
in [1]. Setting η ≡ 1 immediately gives the second limit relation.

9



Proposition 3.5. Suppose that s2 = Var ξ ∈ (0,∞). Then

C

((
ν(t)− m−1t√

2s2m−3t log log t

)
: t ≥ 3

)
= [−1, 1] a.s. (3.6)

where m = Eξ <∞, and

lim supn→∞
sup0≤y≤n |ν(y)− m−1y|

√
2n log log n

= sm−3/2 a.s. (3.7)

Remark 3.6. While formula (3.6) was known before, see, for instance, Theorem 11.1
on p. 108 in [6], we have not been able to locate formula (3.7) in the literature. We
derive both (3.6) and (3.7) from a functional law of the iterated logarithm. The
proof of (3.6), other than that mentioned on p. 108 in [6], is included, for it requires
no extra work in the given framework.

Proof of Proposition 3.5. Denote by D the Skorokhod space of right-continuous real-
valued functions which are defined on [0,∞) and have finite limits from the left at
each positive point. We shall need the commonly used J1-topology on D, see [2, 8].

For integer n ≥ 3, set

Xn(t) :=
ν(nt)− m−1nt√
2s2m−3n log log n

, t ≥ 0.

We shall write (Xn) for (Xn(t))t≥0. Let K denote the set of real-valued absolutely
continuous functions g on [0,∞) such that g(0) = 0 and

∫∞
0 (g′(t))2dt ≤ 1. The

set K is called the Strassen set. It is known (see p. 44 in [7] or Theorem 7.3
on p. 173 in [6]) that the sequence (Xn)n≥3 is, with probability one, relatively
compact in the J1-topology, and the set of its limit points coincides with K. The
evaluation and the supremum functionals h1, h2 : D → R defined by h1(x) := x(1)
and h2(x) := supt∈[0,1] |x(t)|, respectively, are continuous in the J1-topology at each
x ∈ K. Hence, for i = 1, 2, by the continuous mapping theorem (hi(Xn))n≥3 are,
with probability one, relatively compact in the J1-topology, and the sets of their
limit points coincide with hi(K).
Proof of (3.6). We first show that (3.6) holds with an integer argument replacing
a continuous argument. To this end, it remains to prove that h1(K) = [−1, 1] which
is a consequence of two facts: (I) g(1) ∈ [−1, 1] for each g ∈ K; (II) each point of
[−1, 1] is a possible value of g(1) for some g ∈ K.

Let g ∈ K and t ∈ (0, 1]. From

(g(t))2 =

(∫ t

0
g′(y)dy

)2

≤
∫ t

0
(g′(y))2dy

∫ t

0
dy ≤ t (3.8)

it follows that g(1) ∈ [−1, 1]. To prove (II), set g±a (t) := ±min(t, a), for each
a ∈ [0, 1]. Then g±a ∈ K and g±a (1) = ±a.

Recall the notation a(t) =
√

2s2m−3t log log t for t ≥ 3. To pass in (3.6)
from an integer argument to a continuous argument it is enough to check that if
limk→∞(ν(tk) − m−1tk)/a(tk) = b a.s. for some sequence (tk) of real numbers and
some b ∈ R∪{±∞}, then limk→∞(ν(nk)− m−1nk)/a(nk) = b a.s. for some sequence
(nk) of integers. Writing

ν([tk])− m−1[tk]

a([tk] + 1)
− m−1

a([tk] + 1)
≤ ν(tk)− m−1tk

a(tk)
≤ ν([tk])− m−1[tk]

a([tk])

+
ν([tk] + 1)− ν([tk])

a([tk])
,
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where [x] denotes the integer part of x, and noting that limt→∞(ν(t+1)−ν(t))/a(t) =
0 a.s. by Lemma 3.4(b) and limt→∞ a(t+1)/a(t) = 1 we conclude that the implication
above does indeed hold with nk := [tk].
Proof of (3.7). From what has been proved above it follows that the left-hand
side of (3.7) equals supg∈K(supt∈[0,1] |g(t)|) a.s. In view of (3.8) the last expression

does not exceed one. Since supt∈[0,1] |g+1 (t)| = 1 (recall that g+1 (t) = min(t, 1)), we
infer supg∈K(supt∈[0,1] |g(t)|) = 1 which completes the proof of (3.7).
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