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Abstract

We show that the total number of collisions in the exchangeable coalescent process
driven by the beta (1, b) measure converges in distribution to a 1-stable law, as the
initial number of particles goes to infinity. The stable limit law is also shown for the
total branch length of the coalescent tree. These results were known previously for
the instance b = 1, which corresponds to the Bolthausen–Sznitman coalescent. The
approach we take is based on estimating the quality of a renewal approximation
to the coalescent in terms of a suitable Wasserstein distance. Application of the
method to beta (a, b)-coalescents with 0 < a < 1 leads to a simplified derivation
of the known (2 − a)-stable limit. We furthermore derive asymptotic expansions
for the moments of the number of collisions and of the total branch length for the
beta (1, b)-coalescent by exploiting the method of sequential approximations.
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1 Introduction

Pitman [28] and Sagitov [29] introduced exchangeable coalescent processes with multi-
ple collisions, also known as Λ-coalescents. A counting process associated with the Λ-
coalescent is a Markov chain Πn =

(
Πn(t)

)
t≥0

with right-continuous paths, which starts

with n particles Πn(0) = n and terminates when a sole particle remains. The particles
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merge according to the rule: for each t ≥ 0 when the number of particles is Πn(t) = m > 1,
each k tuple of them is merging in one particle at probability rate

λm, k =

∫ 1

0

xk(1− x)m−kx−2Λ(dx), 2 ≤ k ≤ m, (1)

where Λ is a given finite measure on the unit interval. The event of merging of two or more
particles is called collision. By every collision Πn jumps to a smaller value. When Λ is a
Dirac mass at 0 the Λ-coalescent is the classical Kingman coalescent [23], in which every
pair of particles is merging at the unit rate and only binary mergers are possible. Another
eminent instance, known as the Bolthausen-Sznitman coalescent [6], appears when Λ is
the Lebesgue measure on [0, 1].

The subclass of beta-coalescents are the processes driven by some beta measure on
[0, 1] with density

Λ(dx)/dx =
1

B(a, b)
xa−1(1− x)b−1, a, b > 0, (2)

where B(·, ·) denotes Euler’s beta function. This class is amenable to analysis due to the
fact that the transition rates (1) can be expressed in terms of B(·, ·). For this reason and
due to multiple connections with Lévy processes and random trees, the beta coalescents
were the subject of intensive research [2, 3, 5, 8, 9, 15, 19, 28]. We refer to [4] for a survey
and further references.

In this paper we study beta-coalescents with parameter 0 < a ≤ 1. Specifically,
we are interested in the total number of collisions Xn and the total branch length of
the coalescent tree Ln. Note that Xn is equal to the total number of particles born by
collisions, and Ln is the cumulative lifetime of all particles from the start of the process
to its termination. The variable Ln is closely related to the number of segregating sites
Mn, the connection being that given Ln the distribution of Mn is Poisson with mean rLn

for some fixed mutation rate r > 0.
Our first main new contribution is the proof of a 1-stable limit law for Xn and Ln

as n → ∞. As in much of the previous work (see, for instance, [14] and [20]) we use a
renewal approximation to Πn. A novel element in this context is estimating the quality
of approximation in terms of a Wasserstein distance.

The second new contribution are asymptotic expansions for the moments of Xn, Ln

and Mn for the beta (1, b)-coalescent with arbitrary parameter b > 0. These expansions
are obtained independently from the weak limiting results mentioned before. The proofs
are based on the method of sequential approximations similar to those used in [18].

The rest of the paper is organized as follows. Section 2 gives a summary of some
results on limit laws related to the beta-coalescents. In Section 3 general properties of
the block-counting Markov chain and basic recurrences are discussed and the main results
are stated. Section 4 recalls the definition and properties of a Wasserstein distance. In
Section 5 we provide proofs of the main results. Some auxiliary lemmas are collected in
the appendix.
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2 A summary of limit laws for beta-coalescents

The tables in this section summarize the limit laws for Xn, Ln and the absorption time
of the coalescent τn := min{t : Πn(t) = 1}. The distributions which appear in the tables
will be denoted as follows

(i) N , standard normal,

(ii) Sα with 1 < α < 2, (spectrally negative) α-stable distribution with characteristic
function

z 7→ exp
{
|z|α

(
cos(πα/2) + i sin(πα/2)sgn(z)

)}
, z ∈ R, (3)

(iii) S1 (spectrally negative) 1-stable distribution with characteristic function

z 7→ exp
{
− |z|(π/2− i log |z| sgn(z))

}
, z ∈ R, (4)

(iv) Eγ(a, b) with a, b, γ > 0, distribution of the exponential functional
∫∞

0
exp(−γSa, b(t))dt,

where
(
Sa, b(t)

)
t≥0

is a drift-free subordinator with the Laplace exponent

Φa, b(z) =

∫ 1

0

(
1− (1− x)z

)
xa−3(1− x)b−1dx, z ≥ 0,

(v) G, Gumbel with distribution function x 7→ exp
(
− e−x

)
, x ∈ R,

(vi) ρ, convolution of infinitely many exponential laws with rates i(i− 1)/2, i ≥ 2.

Table 1: Limit distributions of (Xn − an)/bn for beta (a, b)-coalescents.

a b an bn distribution source

0 < a < 1 b > 0 (1− a)n (1− a)n1/(2−a) S2−a
[20](b = 1), [14],

this paper

a = 1 b > 0
n(log n)−1+ n

(log n)2 S1
[9, 19](b = 1),

n log log n(log n)−2 this paper

1 < a < 2 b > 0 0 Γ(a)
2−a n2−a E2−a(a, b) [12, 16]

a = 2 b > 0 (2r1)−1(log n)2 (3−1r−3
1 r2 log3 n)1/2 N [12, 18]

a > 2 b > 0 m−1
1 log n (m−3

1 m2 log n)1/2 N [12, 13]

Notation and comments: r1 = ζ(2, b), r2 = 2ζ(3, b), where ζ(·, ·) is the Hurwitz
zeta function; m1 = Ψ(a− 2 + b)−Ψ(b), m2 = Ψ′(b)−Ψ′(a− 2 + b), where Ψ(·) is the
logarithmic derivative of the gamma function.

For the Bolthausen-Sznitman coalescent the limit law of Xn was first obtained in [9]
using singularity analysis of generating functions. A probabilistic proof of this result
appeared in [19], where a coupling with a random walk with barrier was exploited, and
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the technique was further extended in [20] to study collisions in the beta (a, 1)-coalescents
with a ∈ (0, 2). The aforementioned limit laws for a > 1 are specializations of results for
more general Λ-coalescents with dust component, i.e., those driven by the measures Λ such
that

∫ 1

0
x−1Λ(dx) <∞ [12, 13, 14, 16]. For Kingman’s coalescent we have Xn = n− 1 for

all n ∈ N.
In the next two tables the value a = 0 corresponds to Kingman’s coalescent.

Table 2: Limit distributions of (τn − an)/bn for beta (a, b)-coalescents.

a b an bn distribution source

a = 0 0 1 ρ [31]

a = 1 b = 1 log log n 1 G [15, 10]

1 < a < 2 b > 0 m−1 log n (m−3s2 log n)1/2 N [12]

a = 2 b > 0 c−1
1 log n (c−3

1 c2 log n)1/2 N [12]

a > 2 b > 0 (γm1)−1 log n γ−1(m−3
1 (m2 + m2

1) log n)1/2 N [12, 13]

Notation and comments: The constants m and s2 are

m =
a+ b− 1

(a− 1)(2− a)

(
1− (a+ b− 2)

(
Ψ(a+ b− 1)−Ψ(b)

))
,

s2 =
a+ b− 1

(a− 1)(2− a)
×

(
2
(
Ψ(a+ b− 1)−Ψ(b)

)
− (a+ b− 2)

(
(Ψ(a+ b− 1)−Ψ(b))2 + Ψ′(b)−Ψ′(a+ b− 1)

))
,

c1 = b(b + 1)ζ(2, b), c2 = 2b(b + 1)ζ(3, b). The constants m1 and m2 are the same as in
Table 1, and for a > 2

γ =
(a− 1 + b)(a− 2 + b)

(a− 1)(a− 2)
.

In the case a ∈ (0, 1), b > 0 the beta (a, b)-coalescent has the property of coming down
from infinity [30], which implies that τn weakly converges without any normalization to
some limiting law, which is not known explicitly. The result for a > 1 is a special case of
Theorem 4.3 in [12]. The case a = 1 and b 6= 1 is open; in this case the coalescent does
not come down from infinity.

Table 3: Limit distributions of (Ln − an)/bn for beta (a, b)-coalescents.

a b an bn distribution source

a = 0 2 log n 2 G [8, 31]

0 < a < 3−
√

5
2 b = 2− a c1n

a 1 exists [22]

a = 3−
√

5
2 b = 2− a c1n

a c2(log n)α−1 S2−a [22]

3−
√

5
2 < a < 1 b = 2− a c1n

a c2(βn−β)α−1 S2−a [22]

a = 1 b > 0
n(b log n)−1+ n

b(log n)2 S1
[8](b = 1),

b−1n log log n(log n)−2 this paper

a > 1 b > 0 0 B(a, b)n E1(a, b) [24, 25]
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Notation and comments: The constants are α = 2−a, β = 1+α−α2, c1 = Γ(α+1)(α−1)
2−α

,

c2 = Γ(α+1)(α−1)1+α−1

cos (πα/2)Γα−1 (2−α)
.

In [24] the weak convergence of properly normalized Ln was proved for Λ-coalescents
with dust component. In particular, that result covered the beta (a, b)-coalescents with
a > 1. Although some partial results for a ∈ (0, 1) and b > 0 were obtained in [7], this
case with b 6= 2− a remains open.

3 Main results

For the general Λ-coalescent, the Markov chain Πn is a pure-death process which jumps
from state m to m− k + 1 at rate

(
m
k

)
λm, k, where λm, k, 2 ≤ k ≤ m, is given by (1). The

total transition rate from state m ≥ 2 is

λm :=
m∑

k=2

(
m

k

)
λm, k =

∫ 1

0

(
1−mx(1− x)m−1 − (1− x)m

)
x−2Λ(dx). (5)

The first decrement In of Πn has distribution

P{In = k} =

(
n

k + 1

)
λn, k+1

λn

, 1 ≤ k ≤ n− 1.

The strong Markov property of the coalescent entails the distributional recurrences

X1 = 0, Xn
d
= 1 +X ′

n−In
, n ∈ N\{1}; (6)

τ1 = 0, τn
d
= Tn + τ ′n−In

, n ∈ N\{1}; (7)

L1 = 0, Ln
d
= nTn + L′n−In

, n ∈ N\{1}, (8)

where Tn denotes the time of the first collision, hence Tn has the exponential law with
parameter λn; X ′

k (respectively, τ ′k, L
′
k) is independent of In (respectively, (Tn, In)) and is

distributed like Xk (respectively, τk, Lk), for each k ∈ N.
Letting Λ be defined by (2) with a ∈ (0, 1] denote by

p
(a)
n,k := P{In = n− k}, k = 1, . . . , n− 1. (9)

Using the leading terms of asymptotic relations (27), (28) and (29) we infer

lim
n→∞

p
(a)
n,n−k =

(2− a)Γ(k + a− 1)

Γ(a)(k + 1)!
=: p

(a)
k , k ∈ N,

hence
In

d→ ξ, n→∞, (10)

where ξ is a random variable with distribution (p
(a)
k )k∈N.

Consider a zero-delayed random walk
(
Sn

)
n∈N0

defined by

S0 := 0, Sn := ξ1 + . . .+ ξn, n ∈ N,
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where
(
ξj

)
are independent copies of ξ with distribution (p

(a)
k )k∈N, and let

(
Nn

)
n∈N0

be
the associated first-passage time sequence defined by

Nn = inf{k ≥ 0 : Sk ≥ n}, n ∈ N0.

It is plain that

N0 = 0, Nn
d
= 1 +N ′

n−ξ∧n = 1 +N ′
n−ξ1{ξ<n}, n ∈ N, (11)

where N ′
k is independent of ξ and distributed like Nk, for each k ∈ N. Comparing (6) and

(11) one can expect that if Nn (properly centered and normalized) converges weakly to
some proper and non degenerate probability law then the same is true for Xn (with the
same centering and normalization). This is what we mean by a renewal approximation
mentioned in the Introduction. This idea was exploited in [14] (for a ∈ (0, 1), b > 0) and
in [20] (for a ∈ (0, 1], b = 1) to derive the limit distribution of Xn from that of Nn. We
shall use a method based on probability metrics to show the stable limits for a ∈ (0, 1]
and b > 0.

Theorem 3.1. As n→∞ the number of collisions Xn in the beta (a, b)-coalescent satis-
fies

(i) for 0 < a < 1 and b > 0
Xn − (1− a)n

(1− a)n1/(2−a)

d→ S2−a,

(ii) for a = 1 and b > 0,

log2 n

n
Xn − log n− log log n

d→ S1.

As a consequence of our main theorem we also obtain a weak limit for the total branch
length Ln and the number of segregating sites Mn (see [24]) of the beta (1, b)-coalescent.

Corollary 3.2. For the total branch length Ln in the beta (1, b)-coalescent we have as
n→∞

b log2 n

n
Ln − log n− log log n

d→ S1.

Corollary 3.3. For the number of segregating sites Mn in the beta (1, b)-coalescent we
have as n→∞

b log2 n

rn
Mn − log n− log log n

d→ S1,

where r > 0 is the rate of the homogeneous Poisson process on branches of the coalescent
tree.

We now turn to the moments of Xn, Ln and Mn. An analysis of these moments
provides further insight into the structure of these functionals. Our next result concerns
the asymptotics of the moments of the number of collisionsXn in the beta (1, b)-coalescent.
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Theorem 3.4. Fix b ∈ (0,∞) and j ∈ N0. The jth moment of the number of collisions
Xn in the beta (1, b)-coalescent has the asymptotic expansion

EXj
n =

nj

logj n

(
1 +

mj

log n
+O

(
1

log2 n

))
, n→∞, (12)

where the sequence (mj)j∈N0 is recursively defined via m0 := 0 and mj := mj−1 +κj/j for
j ∈ N, with κj := (j + b− 1)Ψ(j + b) + j − (b− 1)Ψ(b), j ∈ N0.

For some more information on the coefficientsmj, j ∈ N, we refer the reader to Eq. (23)
in the proof of the following Corollary 3.5, which provides asymptotic expansions for the
central moments of Xn in the beta (1, b)-coalescent.

Corollary 3.5. Fix b ∈ (0,∞) and j ∈ N \ {1}. The jth central moment of the number
of collisions Xn in the beta (1, b)-coalescent has the asymptotic expansion

E(Xn − EXn)j =
(−1)j

j
B(b, j − 1)

nj

logj+1 n
+O

(
nj

logj+2 n

)
, n→∞. (13)

In particular, Var(Xn) = (2b)−1n2/ log3 n+O(n2/ log4 n) as n→∞.

Remark 3.6. For b = 1, Eq. (13) reduces to the asymptotic expansion (see Panholzer [27,
p. 277 or Theorem 2.1. with α = 0])

E(Xn − EXn)j =
(−1)j

j(j − 1)

nj

logj+1 n
+O

(
nj

logj+2 n

)
, n→∞

of the jth central moment of the number of collisions Xn for the Bolthausen–Sznitman
n-coalescent.

The last result concerns the moments end central moments of the total branch length
Ln of the beta (1, b)-coalescent.

Proposition 3.7. Fix b ∈ (0,∞) and j ∈ N0. The jth moment of the total branch length
Ln of the beta (1, b)-coalescent has the asymptotic expansion

ELj
n =

1

bj
nj

logj n

(
1 +

mj

log n
+O

(
1

log2 n

))
, n→∞, (14)

where the sequence (mj)j∈N0 is defined as in Theorem 3.4. Moreover, for j ∈ {2, 3, . . .},
the jth central moment of Ln has the asymptotic expansion

E(Ln − ELn)j =
(−1)j

jbj
B(b, j − 1)

nj

logj+1 n
+O

(
nj

logj+2 n

)
, n→∞. (15)

In particular, Var(Ln) = (2b3)−1n2/ log3 n+O(n2/ log4 n) as n→∞.

Proposition 3.7 indicates that bLn essentially behaves like Xn, in agreement when
comparing Theorem 3.1 (ii) with Corollary 3.2. The proof of Proposition 3.7 works essen-
tially the same as the analogous proofs of Theorem 3.4 and Corollary 3.5 for Xn. Instead
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of the distributional recurrence (6) for (Xn)n∈N one has to work with the distributional
recurrence (8) for (Ln)n∈N. Since the expansion of ETn = 1/λn is known (see Lemma
6.4), the proofs concerning Xn are readily adapted for Ln. A proof of Proposition 3.7 is
therefore omitted. We finally mention that, for the beta (1, b)-coalescent with mutation
rate r > 0, expansions for the moments and central moments of the number of segregat-
ing sites Mn can be easily obtained, since (see, for example, [8, p. 1417]) the descending
factorial moments of Mn are related to the moments of Ln via E(Mn)j = rjELj

n, j ∈ N0.

4 Probability distances χT and dq

For real-valued random variables X and Y and T > 0 the χT -distance between X and Y
is defined by

χT (X, Y ) = sup
|t|≤T

∣∣EeitX − EeitY
∣∣. (16)

By the continuity theorem for the characteristic functions convergence in distribution

Zn
d→ Z holds if and only if lim

n→∞
χT (Zn, Z) = 0, for every T > 0.

Let Dq, q ∈ (0, 1], be the set of probability laws on R with finite qth absolute moment.
Recall that |x−y|q is a metric on R. The associated Wasserstein distance on Dq is defined
by

dq(X, Y ) = inf E|X̂ − Ŷ |q, (17)

where the infimum is taken over all couplings (X̂, Ŷ ) such that X
d
= X̂ and Y

d
= Ŷ .

For ease of reference we summarize properties of dq in the following proposition.

Proposition 4.1. Let X,Y be random variables with finite qth absolute moments. The
Wasserstein distance dq has the following properties:

(Dist) dq(X, Y ) only depends on marginal distributions of X and Y ,

(Inf) the infimum in (17) is attained for some coupling,

(Rep) the Kantorovich-Rubinstein representation holds

dq(X, Y ) = sup
f∈Fq

|Ef(X)− Ef(Y )|,

where Fq := {f ∈ C(R) : |f(x)− f(y)| ≤ |x− y|q, x, y ∈ R},

(Hom) dq(cX, cY ) = |c|qd(X, Y ) for c ∈ R,

(Reg) for X, Y, Z defined on the same probability space dq(X + Z, Y + Z) ≤ dq(X, Y )
provided Z ∈ Dq is independent of (X,Y ),

(Aff) dq(X + a, Y + a) = dq(X, Y ) for a ∈ R,

(Conv) for X,Xn ∈ Dq convergence dq(Xn, X) → 0, n → ∞ implies Xn
d→ X and

E|Xn|q → E|X|q.
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Proof. We refer to [11, 21] for most of these facts. To prove (Reg) choose an independent
of Z coupling (X ′, Y ′) on which the infimum in the definition of dq is attained. Then

X + Z
d
= X ′ + Z, Y + Z

d
= Y ′ + Z and the definition of dq entails

dq(X + Z, Y + Z) ≤ E|(X ′ + Z)− (Y ′ + Z)|q = E|X ′ − Y ′|q = dq(X, Y ).

Property (Conv): the convergence of moments is easy; the rest is a consequence of Lemma
4.2 to follow.

Lemma 4.2. For T > 0 and q ∈ (0, 1] there exists constant C = CT,q > 0 such that

sup
|t|≤T

|EeitX − EeitY | ≤ Cdq(X, Y ), n ∈ N.

Proof. Assume that the infimum in the definition of dq(X, Y ) is attained on (X̂, Ŷ ). It is
easy to check that for arbitrary q ∈ (0, 1]

|eix − eiy| = 2
∣∣∣ sin

x− y

2

∣∣∣ ≤ 21−qMq|x− y|q, x, y ∈ R, (18)

where Mq := supu>0 | sinu|u−q <∞. Hence

sup
|t|≤T

|EeitX − EeitY | = sup
|t|≤T

|EeitX̂ − EeitŶ | ≤ sup
|t|≤T

E|eitX̂ − EeitŶ |

(18)

≤ 21−qMq sup
|t|≤T

|t|qE|X̂ − Ŷ |q ≤ 21−qMqT
qdq(X, Y ),

as wanted.

5 Proofs

5.1 Proof of Theorem 3.1

Suppose a = 1. It is enough to show that

lim
n→∞

χT

( log2 n

n
Xn − log n− log log n,S1

)
= 0,

for every T > 0.
Using the triangle inequality yields

χT

( log2 n

n
Xn − log n− log log n,S1

)
≤

χT

( log2 n

n
Xn − log n− log log n,

log2 n

n
Nn − log n− log log n

)
+ χT

( log2 n

n
Nn − log n− log log n,S1

)
.
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The second term converges to zero by Proposition 2 in [19] on stable limit for the number
of renewals. In view of Lemma 4.2 to prove convergence to zero of the first term it is
sufficient to check that

lim
n→∞

dq

( log2 n

n
Xn − log n− log log n,

log2 n

n
Nn − log n− log log n

)
= 0,

for some q ∈ (0, 1], which in view of the properties (Hom) and (Aff) in Proposition 4.1
amounts to the estimate

dq(Xn, Nn) = o(nq log−2q n), n→∞. (19)

In the like way, proving Theorem 3.1 in the case a ∈ (0, 1) reduces to showing that

dq(Xn, Nn) = o(nq/(2−a)), n→∞, (20)

for some q ∈ (0, 1].
Using recurrences (6) for Xn and (11) for Nn we obtain

tn := dq(Xn, Nn) = dq(X
′
n−In

, N ′
n−(ξ∧n)) ≤ dq(N

′
n−In

, N ′
n−(ξ∧n)) + dq(X

′
n−In

, N ′
n−In

)

≤ dq(N
′
n−In

, N ′
n−(ξ∧n)) + E|X̂n−In − N̂n−In|q =: cn +

n−1∑
k=1

P{In = n− k}E|X̂k − N̂k|q,

for arbitrary pairs
(
(X̂k, N̂k)

)
1≤k≤n−1

independent of In such that X̂k
d
= Xk, N̂k

d
= Nk.

Passing to the infimum over all such pairs leads to

tn ≤ cn +
n−1∑
k=1

P{In = n− k}tk. (21)

We shall use (21) to estimate tn.
First we find an appropriate bound for cn. Let (În, ξ̂) be a coupling of In and ξ such

that (recall (Inf) in Proposition 4.1) dq(In, ξ ∧n) = E|În− ξ̂ ∧n|q. Let
(
N̂k

)
k∈N be a copy

of
(
Nk

)
k∈N independent of (În, ξ̂). Since

(
În, ξ̂,

(
N̂k

))
is a particular coupling we have

cn = dq(N
′
n−In

, N ′
n−(ξ∧n)) ≤ E|N̂n−În

− N̂n−(ξ̂∧n)|
q.

Exploiting the stochastic inequality

Nx+y −Nx

d

≤ Ny, x, y ∈ N

yields

E|N̂n−În
− N̂n−ξ̂∧n|

q ≤ EN̂ q

|În−ξ̂∧n|.

Furthermore, we obviously have Nn ≤ n, hence

cn ≤ E|În − ξ̂ ∧ n|q = dq(In, ξ ∧ n).
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Now we invoke the Kantorovich-Rubinstein representation ((Rep) in Proposition 4.1) for
dq. Set Fq,0 := Fq ∩ {f : f(0) = 0} and note that f ∈ Fq,0 implies |f(x)| ≤ |x|q, x ∈ R.
We have

cn ≤ dq(In, ξ ∧ n) = sup
f∈Fq

∣∣∣Ef(In)− Ef(ξ ∧ n)
∣∣∣ = sup

f∈Fq,0

∣∣∣Ef(In)− Ef(ξ ∧ n)
∣∣∣

= sup
f∈Fq,0

∣∣∣ n−1∑
k=1

P{In = k}f(k)−
n−1∑
k=1

P{ξ = k}f(k)− f(n)
∑
k≥n

P{ξ = k}
∣∣∣

≤
n−1∑
k=1

∣∣∣P{In = k} − P{ξ = k}
∣∣∣kq + nqP{ξ ≥ n}.

For appropriate q ∈ (0, 1] (to be specified below) such that a + q > 1 use Lemma
6.3 in the Appendix along with the relation P{ξ ≥ n} = O(na−2) to obtain the estimate
cn = O(nq+a−2). With this bound for cn a O-estimate for tn follows using Lemma 6.1.

If a ∈ (0, 1) one can take q = 1. Then the cited lemma applies with ψn = n and
rn = Mna−1 (M large enough) and gives estimate

dq(Xn, Nn) = O(na),

which implies (20).
For the case a = 1 application of the same lemma with ψn = n/(log(n+ 1)) and rn =

Mnq−1 (M large enough) leads to tn ≤ Mnq(log n)−1. Thus (19) holds for q ∈ (0, 1/2).
The proof is complete.

5.2 Proof of Corollaries 3.2 and 3.3.

We follow closely the proofs of Theorem 5.2 and Corollary 6.2 in [8]. In view of

b log2 n

n
Ln − log n− log log n =

log2 n

n
Xn − log n− log log n+

log2 n

n

(
bLn −Xn

)
,

it is enough to show that log2 n
n

(
bLn −Xn

)
→ 0 in L2.

Let Tj’s be independent exponential variables with rates λj, j ≥ 2. Assuming the Tj’s
independent of the sequence of states visited by Πn we may identify Tj with the time Πn

spends in the state j provided this state is visited. Given the sequence of visited states is
n = i0 > i1 > · · · > ik−1 > ik = 1 the total branch length Ln is distributed like

∑k−1
r=0 irTir

for n ∈ N\{1}.
For k ∈ {1, . . . , n} and i = (i0, . . . , ik) with n = i0 > i1 > · · · > ik−1 > ik = 1 define

the events Ak, i := {Xn = k, (Πn(t0), . . . ,Πn(tk)) = i}, where t0 = 0 and t1 < t2 < . . . are
the collision epochs. We have

E(bLn −Xn)2 =
∑
k, i

P{Ak, i}E
( k−1∑

r=0

(birTir − 1)
)2

=
∑
k, i

P{Ak, i}
( k−1∑

r=0

E(birTir − 1)2 +
k−1∑

r,s=0,r 6=s

E(birTir − 1)(bisTis − 1)
)

11



Furthermore, λn = bn+O(log n) as n→∞ for a = 1 and b > 0 (see (29)) which implies

|E(bkTk − 1)| = O(k−1 log k) and E(bkTk − 1)2 = 1 +O(k−1 log k).

Therefore,

E(bLn −Xn)2 ≤
∑
k, i

P{Ak, i}
( n∑

r=2

E(brTr − 1)2 +
( n∑

r=2

|E(brTr − 1)|
)2)

=
∑
k, i

P{Ak, i}
(
n+O(log4 n)

)
= n+O(log4 n),

and the convergence in L2 follows.
Corollary 3.3 follows from the fact that given Ln the distribution of Mn is Poisson

with mean rLn. See Corollary 6.2 in [8] for details.

5.3 Proofs of Theorem 3.4 and Corollary 3.5

Let us verify (12) by induction on j ∈ N. From (6) it follows that a1 := EX1 = 0 and

an := EXn = 1 +
∑n−1

m=2 p
(1)
n,mam, n ∈ N \ {1}. In the following we apply the method

of sequential approximations to the sequence (an)n∈N. The sequence (bn)n∈N, defined via
b1 := 0 and bn := an − n/ log n for n ∈ N \ {1}, satisfies the recursion

bn = an −
n

log n
= 1 +

n−1∑
m=2

p(1)
n,m

(
m

logm
+ bm

)
− n

log n
= qn +

n−1∑
m=2

p(1)
n,mbm,

n ∈ N \ {1}, where qn := 1 − n/ log n +
∑n−1

m=2 p
(1)
n,mm/ logm, n ∈ N \ {1}. By Corollary

6.7 (applied with α := 1 and p := 1),

qn = 1− n

log n
+

(
n

log n
− 1 +

m1

log n
+O

(
1

log2 n

))
=

m1

log n
+O

(
1

log2 n

)
,

where m1 := cb,1,1 = 2 + Ψ(b). The sequence (cn)n∈N, defined via c1 := 0 and cn :=
bn −m1n/ log2 n for n ∈ N \ {1}, therefore satisfies the recursion

cn = bn −m1
n

log2 n
= qn +

n−1∑
m=2

p(1)
n,m

(
m1

m

log2m
+ cm

)
−m1

n

log2 n
= q′n +

n−1∑
m=2

p(1)
n,mcm,

n ∈ N \ {1}, where q′n := qn − m1n/ log2 n + m1

∑n−1
m=2 p

(1)
n,mm/ log2m, n ∈ N \ {1}. By

Corollary 6.7 (applied with α := 1 and p := 2),

q′n = qn −m1
n

log2 n
+m1

(
n

log2 n
− 1

log n
+O

(
1

log2 n

))
= O

(
1

log2 n

)
,

since qn = m1/ log n + O(1/ log2 n). By Lemma 6.2 (applied with α := 1 and p := 3), it
follows that cn = O(n/ log3 n). Thus, (12) holds for j = 1. Assume now that j ≥ 2. From
EXj

In
= E(Xn − 1)j =

∑j−1
i=0

(
j
i

)
(−1)j−iEX i

n + EXj
n it follows that

an,j := EXj
n =

j−1∑
i=0

(
j

i

)
(−1)j−1−iEX i

n + EXj
In

= qn,j +
n−1∑
m=2

p(1)
n,mam,j,

12



n ∈ N \ {1}, where qn,j :=
∑j−1

i=0

(
j
i

)
(−1)j−1−iEX i

n, n ∈ N \ {1}. Since, by induction, for
all i < j,

EX i
n =

ni

logi n

(
1 +

mi

log n
+O

(
1

log2 n

))
,

it follows that (the summand for i = j − 1 asymptotically dominates the others)

qn,j =
jnj−1

logj−1 n

(
1 +

mj−1

log n
+O

(
1

log2 n

))
.

Now apply the method of sequential approximations to the sequence (an,j)n∈N. The se-
quence (bn,j)n∈N, defined via b1,j := 0 and bn,j := an,j − nj/ logj n for n ∈ {2, 3, . . .},
satisfies the recursion

bn,j = q′n,j +
n−1∑
m=2

p(1)
n,mbm,j, n ∈ {2, 3, . . .},

where q′n,j := qn,j − nj/ logj n +
∑n−1

m=2 p
(1)
n,mmj/ logj m, n ∈ {2, 3, . . .}. By Corollary 6.7

(applied with α := j and p := j),

q′n,j = j
nj−1

logj−1 n
+ jmj−1

nj−1

logj n
+O

(
nj−1

logj+1 n

)
− nj

logj n

+
nj

logj n
− j

nj−1

logj−1 n
+ κj

nj−1

logj n
+O

(
nj−1

logj+1 n

)
= jmj

nj−1

logj n
+O

(
nj−1

logj+1 n

)
,

where κj := cb,j,j and mj := mj−1 + κj/j. The sequence (cn,j)n∈N, defined via c1,j := 0
and cn,j := bn,j −mjn

j/ logj+1 n for n ∈ {2, 3, . . .}, therefore satisfies the recursion

cn,j = q′′n,j +
n−1∑
m=2

p(1)
n,mcm,j, n ∈ {2, 3, . . .},

where q′′n,j := q′n,j − mjn
j/ logj+1 n + mj

∑n−1
m=2 p

(1)
n,mmj/ logj+1m, n ∈ {2, 3, . . .}. By

Corollary 6.7 (applied with α := j and p := j + 1),

q′′n,j = jmj
nj−1

logj n
+O

(
nj−1

logj+1 n

)
−mj

nj

logj+1 n

+mj

(
nj

logj+1 n
− j

nj−1

logj n
+O

(
nj−1

logj+1 n

))
= O

(
nj−1

logj+1 n

)
.

By Lemma 6.2 (applied with α := j and p := j+2), it follows that cn,j = O(nj/ logj+2 n),
which shows that (12) holds for j. The induction is complete which finishes the proof of
Theorem 3.4.
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We now turn to the proof of Corollary 3.5. Let us first verify that the sequence
(mj)j∈N0 , recursively defined in Theorem 3.4, satisfies the inversion formula

j∑
i=0

(
j

i

)
(−1)j−imi =

(−1)j

j
B(b, j − 1), j ∈ N \ {1}. (22)

Using the formula Ψ(x+1) = Ψ(x)+1/x, x ∈ (0,∞), it is readily checked that κj+1−κj =
2 + Ψ(b + j), j ∈ N0. For all j ∈ N0 it follows that κj =

∑j−1
i=0 (κi+1 − κi) =

∑j−1
i=0 (2 +

Ψ(b+ i)) = 2j +
∑j−1

i=0 Ψ(b+ i) and

mj =

j∑
l=1

(ml−ml−1) =

j∑
l=1

κl

l
=

j∑
l=1

(
2+

1

l

l−1∑
i=0

Ψ(b+i)

)
= 2j+

j−1∑
i=0

Ψ(b+i)

j∑
l=i+1

1

l
. (23)

By (23), for j ∈ {2, 3, . . .},

j∑
i=0

(
j

i

)
(−1)j−imi =

j∑
i=1

(
j

i

)
(−1)j−i

(
2i+

i−1∑
k=0

Ψ(b+ k)
i∑

l=k+1

1

l

)

=

j∑
i=1

(
j

i

)
(−1)j−i

i−1∑
k=0

Ψ(b+ k)
i∑

l=k+1

1

l

=

j−1∑
k=0

Ψ(b+ k)

j∑
l=k+1

1

l

j∑
i=l

(
j

i

)
(−1)j−i =

j−1∑
k=0

Ψ(b+ k)

j∑
l=k+1

1

l

(
j − 1

l − 1

)
(−1)j−l

=
1

j

j−1∑
k=0

Ψ(b+ k)

j∑
l=k+1

(
j

l

)
(−1)j−l =

1

j

j−1∑
k=0

Ψ(b+ k)

(
j − 1

k

)
(−1)j−1−k.

Plugging in
(

j−1
k

)
=

(
j−2
k−1

)
+

(
j−2
k

)
and reordering with respect to

(
j−2
k

)
leads to

j∑
i=0

(
j

i

)
(−1)j−imi =

1

j

j−2∑
k=0

(−1)j−2−k

(
j − 2

k

)
(Ψ(b+ k + 1)−Ψ(b+ k))

=
(−1)j

j

j−2∑
k=0

(−1)k

(
j − 2

k

)
1

b+ k
=

(−1)j

j
B(b, j − 1),

where the last equality holds, since
∑n

k=0(−1)k
(

n
k

)
/(b + k) = B(b, n + 1) for all n ∈ N0,

which is for example readily verified by induction on n ∈ N0. Thus, (22) is established.
Thanks to Theorem 3.4 and the inversion formula (22) the proof of Corollary 3.5 is now

straightforward. Basically the same argument has for example been used by Panholzer
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[27, p. 277]. Plugging in the expansion (12) for the ordinary moments shows that

E(Xn − EXn)j =

j∑
i=0

(
j

i

)
(−1)j−iEX i

n(EXn)j−i

=

j∑
i=0

(
j

i

)
(−1)j−i ni

logi n

(
1 +

mi

log n
+O

(
1

log2 n

))(
n

log n

(
1 +

m1

log n
+O

(
1

log2 n

)))j−i

=
nj

logj n

j∑
i=0

(
j

i

)
(−1)j−i

(
1 +

mi

log n
+O

(
1

log2 n

))(
1 +

(j − i)m1

log n
+O

(
1

log2 n

))

=
nj

logj n

j∑
i=0

(
j

i

)
(−1)j−i

(
1 +

(j − i)m1 +mi

log n
+O

(
1

log2 n

))

=
nj

logj n

j∑
i=0

(
j

i

)
(−1)j−i +

nj

logj+1 n

j∑
i=0

(
j

i

)
(−1)j−i((j − i)m1 +mi) +O

(
nj

logj+2 n

)
=

nj

logj+1 n

(−1)j

j
B(b, j − 1) +O

(
nj

logj+2 n

)
,

since, for j ≥ 2,
∑j

i=0

(
j
i

)
(−1)j−i = 0,

∑j
i=0

(
j
i

)
(−1)j−i(j−i) = 0, and

∑j
i=0

(
j
i

)
(−1)j−imi =

(−1)j/jB(b, j − 1) by (22). The proof of Corollary 3.5 is complete.

6 Appendix

For each n ∈ N let (pn, k)0≤k≤n be an arbitrary probability distribution with pn, n < 1.
Define a sequence (an)n∈N as a (unique) solution to the recursion

an = rn +
n∑

k=0

pn,kak, n ∈ N, (24)

with given rn ≥ 0 and given initial value a0 = a ≥ 0. The following result is Lemma 6.1
from [12].

Lemma 6.1. Suppose there exists a sequence (ψn)n∈N such that

(C1) lim infn→∞ ψn

∑n
k=0(1− k/n)pn,k > 0,

(C2) the sequence (rkψk/k)k∈N is non-increasing.

Then an, defined by (24), satisfies

an = O
( n∑

k=1

rkψk

k

)
, n→∞. (25)

Lemma 6.2. Let (an)n∈N be a sequence of real numbers satisfying the recursion a1 = 0

and an = qn +
∑n−1

m=2 p
(1)
n,mam, n ∈ N \ {1}, for some given sequence (qn)n∈N\{1}. If

qn = O(nα−1/ logp−1 n) for some given constants α ∈ (0,∞) and p ∈ [0,∞), then an =
O(nα/ logp n).
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Proof. Fix some δ such that 0 < δ < α. Set a′n := |an|/nδ and q′n := |qn|/nδ. Then
q′n ≤Mnα−1−δ/ logp−1 n =: rn for some M > 0 and all n ≥ 2. Further,

a′n ≤ q′n +
n−1∑
m=2

p(1)
n,m

|am|
nδ

≤ q′n +
n−1∑
m=2

p(1)
n,m

|am|
mδ

= q′n +
n−1∑
m=2

p(1)
n,ma

′
m ≤ rn +

n−1∑
m=2

p(1)
n,ma

′
m.

Set ψn := n/ log n, then both conditions (C1) and (C2) of Lemma 6.1 are fulfilled. Hence
a′n = O(

∑n
k=2 k

α−1−δ/ logp k) = O(nα−δ/ logp n) and |an| = nδa′n = O(nα/ logp n).

Lemma 6.3. For the first decrement In of the Markov chain
(
Πn

)
associated with the

beta (a, b)-coalescent (a ∈ (0, 1] and b > 0) and a random variable ξ with distribution

(p
(a)
k )k∈N

n−1∑
k=1

kq|P{In = k} − P{ξ = k}| = O(na+q−2), (26)

whenever 0 < q ≤ 1 and q + a > 1.

Proof. For the beta (a, b)-coalescents formula (1) reads

λn, k+1 =

∫ 1

0

xk−1(1− x)n−k−1Λ(dx) =
B(a+ k − 1, n− k + b− 1)

B(a, b)
.

Using the known estimate for the gamma function (see formula (6.1.47) in [1])∣∣∣Γ(n+ c)

Γ(n+ d)
− nc−d

∣∣∣ ≤Mc, dn
c−d−1, n ≥ 2, c, d > −2,

we obtain(
n

k + 1

)
λn, k+1 =

(
n

k + 1

)
B(a+ k − 1, n− k + b− 1)

B(a, b)
(27)

=
Γ(n+ 1)Γ(a+ k − 1)Γ(n− k + b− 1)

Γ(k + 2)Γ(n− k)Γ(n+ a+ b− 2)B(a, b)

=
Γ(a+ k − 1)

(k + 1)!B(a, b)

(
n3−a−b +O(n2−a−b)

)(
(n− k)b−1 +O

(
(n− k)b−2

))
,

uniformly for 1 ≤ k ≤ n− 1 and n ≥ 2.
Using (5) with Λ given by (2) we infer (see also Corollary 2 in [14])

λn =
Γ(a)

(2− a)B(a, b)
n2−a +O(n1−a) =

Γ(a)

(2− a)B(a, b)
n2−a

(
1 +O(n−1)

)
, (28)

when a ∈ (0, 1) and b > 0, and

λn = bn+O(log n), (29)
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when a = 1 and b > 0. Hence for 0 < a < 1, b > 0, n ≥ 2 and k = 1, . . . , n− 1

p
(a)
n,n−k =

(2− a)Γ(a+ k − 1)

Γ(a)(k + 1)!
n1−b

(
(n− k)b−1 +O

(
(n− k)b−2

))(
1 +O(n−1)

)
= p

(a)
k

(
(1− k/n)b−1 +O

(
n−1(1− k/n)b−2

))(
1 +O(n−1)

)
= p

(a)
k

(
(1− k/n)b−1 +O

(
n−1(1− k/n)b−2

))
= p

(a)
k (1− k/n)b−1 +O

(
p

(a)
k n−1(1− k/n)b−2

)
.

Analogously for a = 1

p
(1)
n,n−k = p

(1)
k

(
(1− k/n)b−1 +O

(
n−1(1− k/n)b−2

))(
1 +O(n−1 log n)

)
= p

(1)
k

(
(1− k/n)b−1 +O

(
n−1(1− k/n)b−2

)
+O

(
n−1 log n(1− k/n)b−1

))
= p

(1)
k (1− k/n)b−1 +O

(
p

(1)
k n−1(1− k/n)b−2

)
+O

(
p

(1)
k n−1 log n(1− k/n)b−1

)
.

Substituting these expansions into the left-hand side of (26) gives

n−1∑
k=1

kq
∣∣∣P{In = k} − P{ξ = k}

∣∣∣ ≤
n−1∑
k=1

p
(a)
k kq

∣∣∣(1− k

n

)b−1

− 1
∣∣∣

+
c1
n

n−1∑
k=1

p
(a)
k kq

(
1− k

n

)b−2

=: S1(a, n) + S2(a, n),

for 0 < a < 1, and

n−1∑
k=1

kq
∣∣∣P{In = k} − P{ξ = k}

∣∣∣ ≤ S1(1, n) + S2(1, n) +
c2 log n

n

n−1∑
k=1

p
(1)
k kq

(
1− k

n

)b−1

=: S1(1, n) + S2(1, n) + S3(1, n),

for a = 1. Here and hereafter c1, c2, . . . denote some positive constants whose values
are of no importance. Our aim is to show that Si(a, n) = O(nq+a−2) for i = 1, 2 and

S3(1, n) = O(nq−1). By virtue of p
(a)
k ≤ c3k

a−3, for all k ∈ N, we infer

S1(a, n) ≤ c3

n−1∑
k=1

ka+q−3
∣∣∣(1− k

n

)b−1

− 1
∣∣∣

= c3

[n/2]∑
k=1

ka+q−3
∣∣∣(1− k

n

)b−1

− 1
∣∣∣ + c3

n−1∑
k=[n/2]+1

ka+q−3
∣∣∣(1− k

n

)b−1

− 1
∣∣∣

≤ c4
n

[n/2]∑
k=1

ka+q−2 + c3n
a+q−2

( 1

n

n−1∑
k=[n/2]+1

(k
n

)a+q−3∣∣∣(1− k

n

)b−1

− 1
∣∣∣),

17



where the inequality |(1− x)q − 1| ≤ c5x, x ∈ [0, 1/2] has been utilized. The expression

in the parentheses converges to
∫ 1

1/2
xa+q−3|(1 − x)b−1 − 1|dx < ∞. Hence S1(a, n) =

O(nq+a−2).
Similarly

S2(a, n)

≤ c6
n

n−1∑
k=1

ka+q−3
(
1− k

n

)b−2

=
c6
n

[n/2]∑
k=1

ka+q−3
(
1− k

n

)b−2

+
c6
n

n−1∑
k=[n/2]+1

ka+q−3
(
1− k

n

)b−2

≤ c6
n

[n/2]∑
k=1

ka+q−3
(
1− k

n

)b−2

+ c6

n−1∑
k=[n/2]+1

ka+q−3
(
1− k

n

)b−1

=
c6
n

[n/2]∑
k=1

ka+q−3
(
1− k

n

)b−2

+ c6n
a+q−2

( 1

n

n−1∑
k=[n/2]+1

(k
n

)a+q−3(
1− k

n

)b−1)
= O(na+q−2)

since the first term is O(n−1) and the second term is O(na+q−2) by the same reasoning as
for S1(a, n).

Finally

S3(1, n) ≤ c7 log n

n

n−1∑
k=1

kq−2
(
1− k

n

)b−1

≤ c7 log n

n

n−1∑
k=1

kq−2
∣∣∣(1− k

n

)b−1

− 1
∣∣∣ +

c7 log n

n

n−1∑
k=1

kq−2

= O(nq−2 log n) +O(n−1 log n),

in view of the estimate for S1(a, n). Therefore S3(1, n) = O(nq−1) and the proof is
complete.

We provide a basic lemma concerning the total rates of the beta (1, b)-coalescent.

Lemma 6.4. The total rates λn, n ∈ N, of the beta (1, b)-coalescent are explicitly given
by

λn = b

n−1∑
k=1

k

b+ k − 1
= b(n− 1)− b(b− 1)(Ψ(n+ b− 1)−Ψ(b)), n ∈ N. (30)

Moreover, the total rates have the asymptotic expansion

λn = bn− b(b− 1) log n− b+ b(b− 1)Ψ(b) +O(n−1), n→∞, (31)
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and the inverse of the total rate λn has the asymptotic expansion

1

λn

=
1

bn

(
1 + (b− 1)

log n

n
+

1− (b− 1)Ψ(b)

n
+O

(
log2 n

n2

))
, n→∞. (32)

Proof. Eq. (30) is well known (see, for example, [17, Appendix, Eq. (19)]. The expansion
(31) follows directly from (30), since Ψ(n+ b− 1) = log n+O(n−1) as n→∞. The last
assertion (32) follows from

bn

λn

− 1− (b− 1)
log n

n
− 1− (b− 1)Ψ(b)

n

=
bn2 − λn

(
n+ (b− 1) log n+ 1− (b− 1)Ψ(b)

)
nλn

(33)

=
O(log2 n)

nλn

= O

(
log2 n

n2

)
,

where the very last equality holds, since λn ∼ bn, and the equality before follows by
plugging in (31) for the term λn occurring in the numerator of the fraction in (33) and
multiplying everything out.

The next Lemma 6.5 provides an asymptotic expansion as n → ∞ for sums of the
form

n−1∑
m=2

mα

(n−m)(n−m+ 1) logpm
, α ∈ R, p ∈ [0,∞).

For parameters α > 0 we will need an even sharper version (see Lemma 6.6 below), but we
start with this simpler version, which holds for arbitrary α ∈ R. Given the overlap with
the proof of the following Lemma 6.6 and given the fact that the proof is considerably
simpler than that of Lemma 6.6, the proof of Lemma 6.5 is omitted.

Lemma 6.5. For α ∈ R and p ∈ [0,∞), as n→∞,

n−1∑
m=2

mα

(n−m)(n−m+ 1) logpm
=

nα

logp n

(
1− α

log n

n
+O

(
1

n

))
.

The following Lemma 6.6 is a sharper version of Lemma 6.5 with the cost that it holds
only for α > 0. It will turn out (see the following Corollary 6.7 and the proof of Theorem
3.4) that the expansion in Lemma 6.6 is fundamental for the analysis of the moments of
the number of collisions of the beta (1, b)-coalescent.

Lemma 6.6. For α ∈ (0,∞) and p ∈ [0,∞),

n−1∑
m=2

mα

(n−m)(n−m+ 1) logpm
=

nα

logp n

(
1− α

log n

n
+
αΨ(α) + p

n
+O

(
1

n log n

))
as n→∞.
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Proof. Note first that

n−1∑
m=2

mα

(n−m)(n−m+ 1)

(
1

logp n
+ p

− log(m/n)

logp+1 n

)

=
1

logp n

n−1∑
m=2

mα

(n−m)(n−m+ 1)
+

p

logp+1 n

n−1∑
m=2

mα(− log(m/n))

(n−m)(n−m+ 1)

=
1

logp n
nα

(
1− α log n

n
+
αΨ(α)

n
+O

(
1

n log n

))
+

p

logp+1 n

(
nα−1 log n+O(nα−1)

)
=

nα

logp n

(
1− α log n

n
+
αΨ(α) + p

n
+O

(
1

n log n

))
.

Thus, it suffices to verify that

n−1∑
m=2

mα

(n−m)(n−m+ 1)

(
1

logpm
− 1

logp n
− p

− log(m/n)

logp+1 n

)
= O

(
nα−1

logp+1 n

)
. (34)

The function fnp : (1, n] → R, defined via

fnp(x) :=
1

logp x
− 1

logp n
− p

− log(x/n)

logp+1 n
,

has derivative

f ′np(x) =
p

x

(
1

logp+1 n
− 1

logp+1 x

)
≤ 0

and satisfies fnp(n) = 0. Thus, fnp ≥ 0. In order to verify (34) we use a decomposition
method. We split up the sum on the left hand side in (34) into two parts

∑an

m=2 . . . and∑n−1
m=an+1 . . ., and handle these two parts separately. We work with the sequence (an)n∈N

defined via a1 := 1 and an := bn/ logp+1 nc for n ≥ 2. For the first part we obtain

0 ≤
an∑

m=2

mα

(n−m)(n−m+ 1)
fnp(m) ≤

an∑
m=2

mα

(n−m)(n−m+ 1)

1

logpm

≤ nα

logp 2

an∑
m=2

(
1

n−m
− 1

n−m+ 1

)
= O

(
nα−1

logp+1 n

)
,

since

an∑
m=2

(
1

n−m
− 1

n−m+ 1

)
=

1

n− an

− 1

n− 1
=

an − 1

(n− an)(n− 1)
∼ 1

n logp+1 n
.
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Moreover, for the second part we have

n−1∑
m=an+1

mα

(n−m)(n−m+ 1)
fnp(m)

=
n−1∑

m=an+1

mα

(n−m)(n−m+ 1)

( 1

logpm
− 1

logp n
− p

− log(m/n)

logp+1 n

)
=

n−1∑
m=an+1

mα

(n−m)(n−m+ 1)

logp n− logpm− p(− log(m/n)) logpm/ log n

logp n logpm

≤ nα

logp n logp an

n−1∑
m=an+1

logp n− logpm+ p log(m/n) logpm/ log n

(n−m)(n−m+ 1)

∼ nα

log2p n

n−1∑
m=an+1

logp n− logpm+ p log(m/n) logpm/ log n

(n−m)(n−m+ 1)
,

since log an ∼ log n as n→∞. Thus, it remains to verify that

n−1∑
m=an+1

logp n− logpm+ p log(m/n) logpm/ log n

(n−m)(n−m+ 1)
= O

( logp−1 n

n

)
. (35)

Let us distinguish the two cases p ≥ 1 and p < 1. Suppose first that p ≥ 1. Then the
map x 7→ xp is convex on [0,∞). Thus, yp − xp ≤ p(y − x)yp−1 for all x, y ∈ [0,∞) with
x ≤ y. It follows that yp − xp + p(x − y)xp/y ≤ p2(y − x)2yp−2 for all x, y ∈ [0,∞) with
x < y. Applying this inequality with 0 ≤ x := logm < y := log n yields

0 ≤
n−1∑

m=an+1

logp n− logpm+ p log(m/n) logpm/ log n

(n−m)(n−m+ 1)

≤
n−1∑
m=1

logp n− logpm+ p log(m/n) logpm/ log n

(n−m)(n−m+ 1)

≤
n−1∑
m=1

p2(log n− logm)2 logp−2 n

(n−m)(n−m+ 1)
= p2 logp−2 n

n−1∑
m=1

log2(m/n)

(n−m)(n−m+ 1)
.

Note that

n

n−1∑
m=1

log2(m/n)

(n−m)(n−m+ 1)
=

1

n

n−1∑
m=1

log2(m/n)

(1−m/n)(1− (m− 1)/n)

→
∫ 1

0

log2 x

(1− x)2
dx = Γ(3)ζ(2) =

π2

3
∈ R,

where the particular value Γ(3)ζ(2) of last integral is obtained by choosing s := 2 in the
chain of equalities∫ 1

0

(− log(1− u))s

u2
du =

∫ ∞

0

xsex

(ex − 1)2
dx =

∫ ∞

0

sxs−1

ex − 1
dx = Γ(s+ 1)ζ(s), s > 1,
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which are based on the substitution x = − log(1− u), partial integration, and on formula
23.2.7 in [1]. Thus, the expression on the left hand side in (35) is even O((logp−2 n)/n).
In particular, (35) holds. Suppose now that p ∈ [0, 1). Then the map x 7→ xp is concave
on [0,∞). Thus, yp − xp ≤ p(y − x)xp−1 for all x, y ∈ (0,∞) with x ≤ y. It follows that
yp − xp + p(x− y)xp/y ≤ p(y − x)2xp−1/y for all x, y ∈ (0,∞) with x ≤ y. Applying this
inequality with 0 < x := logm < y := log n yields

0 ≤
n−1∑

m=an+1

logp n− logpm+ p log(m/n) logpm/ log n

(n−m)(n−m+ 1)

≤
n−1∑

m=an+1

p(log n− logm)2(logp−1m)/ log n

(n−m)(n−m+ 1)

≤ p logp−1 an

log n

n−1∑
m=an+1

log2(m/n)

(n−m)(n−m+ 1)

≤ p logp−1 an

log n

n−1∑
m=1

log2(m/n)

(n−m)(n−m+ 1)
= O

(
logp−2 n

n

)
,

since log an ∼ log n and the last sum is O(1/n) as shown above. Again, (35) holds.

The following Corollary 6.7 is essentially obtained by combining the three Lemmata
6.4, 6.5 and 6.6. It provides an asymptotic expansion for the sum

∑n−1
m=2 p

(1)
n,mmα/ logpm.

This expansion is a key tool for the proof of Theorem 3.4.

Corollary 6.7. Fix α ∈ [1,∞) and p ∈ [0,∞). For the beta (1, b)-coalescent with param-
eter b ∈ (0,∞),

n−1∑
m=2

p(1)
n,m

mα

logpm
=

nα

logp n

(
1− α

log n

n
+
cb,α,p

n
+O

(
1

n log n

))
, n→∞, (36)

where cb,α,p := (α+b−1)Ψ(α+b−1)+p+1+(1−b)Ψ(b) = (α+b−1)Ψ(α+b)+p−(b−1)Ψ(b).

Remark 6.8. The following proof shows that Corollary 6.7 even holds for the slightly larger
range of parameters α, b ∈ (0,∞) satisfying α + b − 1 > 0. However, we need Corollary
6.7 only for α ∈ [1,∞) and b ∈ (0,∞), in which case α+ b− 1 > 0 automatically holds.

Proof. Let gnm := λnP{In = n−m} denote the rate at which the block counting process
moves from the state n to the state m ∈ {1, . . . , n− 1}. It suffices to verify that

n−1∑
m=2

gnm
mα

logpm

= b
nα+1

logp n

(
1− (α+ b− 1)

log n

n
+

(α+ b− 1)Ψ(α+ b− 1) + p

n
+O

(
1

n log n

))
,(37)

since (36) then follows from p
(1)
n,m = gnm/λn by multiplying (37) with (32). Note that

gnm = b
n!

Γ(b+ n− 1)

1

(n−m)(n−m+ 1)

Γ(b+m− 1)

(m− 1)!
, 1 ≤ m < n.
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Since the first fraction has expansion

n!

Γ(b+ n− 1)
=

1

nb−2

(
1−

(
b− 1

2

)
1

n
+O

(
1

n2

))
, (38)

it hence suffices to verify that

n−1∑
m=2

1

(n−m)(n−m+ 1)

Γ(b+m− 1)

(m− 1)!

mα

logpm

=
nα+b−1

logp n

(
1− (α+ b− 1)

log n

n

+

(
b−1
2

)
+ (α+ b− 1)Ψ(α+ b− 1) + p

n
+O

(
1

n log n

))
, (39)

since (37) then follows by multiplying (39) with (38). Thus, it remains to verify (39). Since
for all m ∈ N and all b ∈ (0,∞), the Pochhammer like expression Γ(b+m− 1)/(m− 1)!
appearing on the left hand side in (39) is bounded below and above by

mb−1 +

(
b− 1

2

)
mb−2 ≤ Γ(b+m− 1)

(m− 1)!
≤ mb−1 +

(
b− 1

2

)
mb−2 +Kbm

b−3,

where Kb := Γ(b)− 1−
(

b−1
2

)
, (39) follows by plugging in these lower and upper bounds

on the left hand side in (39) and applying afterwards Lemma 6.6 with α replaced by
α+ b− 1 > 0 and noting that

n−1∑
m=2

mα+b−2

(n−m)(n−m+ 1) logpm
=

nα+b−2

logp n

(
1 +O

(
log n

n

))
and that

n−1∑
m=2

mα+b−3

(n−m)(n−m+ 1) logpm
= O

(
nα+b−3

logp n

)
by Lemma 6.5. The proof is complete.
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