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Abstract

We consider renewal shot noise processes with response functions which are eventually non-
decreasing and regularly varying at infinity. We prove weak convergence of renewal shot
noise processes, properly normalized and centered, in the space D[0,∞) under the J1 or M1

topology. The limiting processes are either spectrally nonpositive stable Lévy processes, in-
cluding the Brownian motion, or inverse stable subordinators (when the response function is
slowly varying), or fractionally integrated stable processes or fractionally integrated inverse
stable subordinators (when the index of regular variation is positive). The proof exploits
fine properties of renewal processes, distributional properties of stable Lévy processes and
the continuous mapping theorem.

Keywords: continuous mapping theorem, fractionally integrated (inverse) stable process; func-
tional limit theorem; M1 topology; renewal shot noise process; spectrally negative stable process

1 Introduction

Let (ξk)k∈N be independent copies of a positive random variable ξ. Denote

S0 := 0, Sn := ξ1 + . . . + ξn, n ∈ N

and
N(t) := #{k ∈ N0 : Sk ≤ t} = inf{k ∈ N : Sk > t}, t ∈ R.

It is clear that N(t) = 0 for t < 0.
Let D := D[0,∞) denote the Skorohod space of right-continuous real-valued functions on

[0,∞) with finite limits from the left. Elements of D are sometimes called càdlàg functions. For
a càdlàg function h, we define

X(t) :=
∑
k≥0

h(t− Sk)1{Sk≤t} =
∫

[0, t]
h(t− y)dN(y), t ≥ 0, (1)

and call
(
X(t)

)
t≥0

a renewal shot noise process. The function h is called an impulse response
function or just response function. Note that the so defined X(t) is a.s. finite, for each t ≥ 0.
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Processes (1) and more general shot noise processes have been used to model a lot of diverse
phenomena, see, for instance, [19] and [36] and references therein. More recent contributions [23]
and [30] have discussed applications in risk theory and finance, respectively. A non-exhaustive
list of works concerning mathematical aspects of shot noise processes is given in [1].

Since h is càdlàg, for every t ≥ 0,
(
X(ut)

)
u≥0

is a random element taking values in D. Our
aim is to prove the weak convergence of, properly normalized and centered, X(ut) in D under the
J1 or M1 topology. In what follows the symbols J1⇒, M1⇒ and ⇒ mean that the convergence takes
place under the J1 topology, under the M1 topology or under either of these, respectively. The
J1 topology is the commonly used topology in D (see [8] and [37]). We recall that lim

n→∞
xn = x

in D[0, T ], T > 0, under the M1 topology if

lim
n→∞

inf max
(

sup
t∈[0, 1]

|rn(t)− r(t)|, sup
t∈[0, 1]

|un(t)− u(t)|
)

= 0,

where the infimum is taken over all parametric representations (u, r) of x and (un, rn) of xn,
n ∈ N. We refer to p. 80-82 in [37] for further details and definitions. The M1 topology which
like the J1 topology was introduced in Skorohod’s seminal paper [33] is not that common. Its
appearances in the probability literature are comparatively rare. An incomplete list of works
which have effectively used the M1 topology in diverse applied problems includes [4], [5], [25],
[28], [29] and [35]. Remark 12.3.2 in [37] gives more references.

The J1 convergence in D[0, 1], as n →∞, of
∑

k≥0 h(t−n−1Sk)1{Sk≤nt}, properly normalized
and centered, to a Gaussian process can be derived from more general results obtained in [20].
When

(
N(t)

)
is the Poisson process, a functional convergence to a Gaussian process and an

infinite variance stable process was proved in [23] (see also [18] and references therein) and [24],
respectively, for shot noise processes which are more general than ours. We are not aware of any
papers which would prove functional limit theorems for the shot noise processes X(ut) in the
case of a general renewal process

(
N(t)

)
. In particular, in this wider framework a new technique

is needed intended to replace the characteristic functions approach available in the Poisson case.
To some extent, this has served as the first motivation for the present research. Secondly (and
more importantly), based on the technique developed in [15] and [16] we expect that a particular
case of Theorem 1.1 with h being the distribution function of a positive random variable will
form a basis for obtaining functional limit theorems for the number of occupied boxes in the
Bernoulli sieve (see [16] for the definition and further details).

While the weak convergence of the renewal shot noise processes with eventually nonincreasing
response functions will be investigated in a forthcoming paper [21], here we only consider the
renewal shot noise processes with eventually nondecreasing response functions. Theorem 1.1
which is our main result relies heavily upon known functional limit theorems for N(t). To shorten
the presentation the latter are not given as a separate statement. Rather they are included in
Theorem 1.1 as a particular case with h(y) = 1[0,∞)(y). Note that all bounded eventually
nondecreasing h with positive lim

t→∞
h(t) satisfy (2) below with β = 0 and `∗(x) ≡ lim

t→∞
h(t).

Therefore these are covered by the theorem.

Theorem 1.1. Let h : R+ → R be a locally bounded, right-continuous and eventually nonde-
creasing function, and

h(x) ∼ xβ`∗(x), x →∞, (2)

for some β ∈ [0,∞) and some `∗ slowly varying at ∞.
(A1) If σ2 := Var ξ < ∞ then

X(ut)− µ−1
∫
[0, ut] h(y)dy

h(t)
√

σ2µ−3t

J1⇒
∫

[0, u]
(u− y)βdW2(y), t →∞,
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where µ := Eξ < ∞ and
(
W2(u)

)
u≥0

is a Brownian motion.
(A2) If σ2 = ∞ and ∫

[0, x]
y2P{ξ ∈ dy} ∼ `(x), x →∞,

for some ` slowly varying at ∞, then

X(ut)− µ−1
∫
[0, ut] h(y)dy

h(t)µ−3/2c(t)
J1⇒

∫
[0, u]

(u− y)βdW2(y), t →∞,

where c(t) is any positive continuous function such that lim
t→∞

t`(c(t))
c2(t)

= 1 and
(
W2(u)

)
u≥0

is a
Brownian motion.
(A3) If

P{ξ > x} ∼ x−α`(x), x →∞, (3)

for some α ∈ (1, 2) and some ` slowly varying at ∞, then

X(ut)− µ−1
∫
[0, ut] h(y)dy

h(t)µ−1−1/αc(t)
M1⇒

∫
[0, u]

(u− y)βdWα(y), t →∞,

where c(t) is any positive continuous function such that lim
t→∞

t`(c(t))
cα(t) = 1 and

(
Wα(u)

)
u≥0

is an

α-stable Lévy process such that Wα(1) has the characteristic function

z 7→ exp
{
− |z|αΓ(1− α)(cos(πα/2) + i sin(πα/2) sgn(z))

}
, z ∈ R. (4)

(A4) If condition (3) holds for some α ∈ (0, 1) then

P{ξ > t}
h(t)

X(ut) J1⇒
∫

[0, u]
(u− y)βdVα(y), t →∞,

where
(
Vα(u)

)
u≥0

is an inverse α-stable subordinator defined by

Vα(u) := inf{s ≥ 0 : Dα(s) > u},

where
(
Dα(t)

)
t≥0

is an α-stable subordinator with − log Ee−sDα(1) = Γ(1− α)sα, s ≥ 0.

Remark 1.2. Theorem 1.1 does not cover one case for which we have the following conjecture:
(A5) If condition (3) holds with α = 1 then

m(t)
h(t)c(t/m(t))

(
X(ut)− 1

m(c(t/m(t)))

∫
[0, ut]

h(y)dy

)
M1⇒

∫
[0, u]

(u− y)βdW1(y),

where c(t) is any positive continuous function such that lim
t→∞

t`(c(t))
c(t) = 1, m(t) :=

∫
[0, t] P{ξ >

y}dy, t > 0, and
(
W1(u)

)
u≥0

is a 1-stable Lévy process such that W1(1) has the characteristic
function

z 7→ exp
{
− |z|(π/2− i log |z| sgn(z))

}
, z ∈ R.

The rest of the paper is organized as follows. In Section 2 we recall a simplified definition of
the stochastic integral in the case when the integrand is a deterministic function. In Section 3
we discuss properties of the limiting processes appearing in Theorem 1.1. The proof of Theorem
1.1 is given in Section 4. In Section 5 we discuss an extension of Theorem 1.1 to response
functions h concentrated on the whole line. Finally Appendix collects all the needed auxiliary
information.
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2 Defining a stochastic integral via integration by parts

There is a general definition of a stochastic integral with integrand being a locally bounded
predictable process and integrator being a semimartingale, in particular, a Lévy process (see,
for instance, Theorem 23.4 in [22]). However, when the integrand is a deterministic function
of bounded variation there is an equivalent definition which is much simpler. It turns out that
the latter stochastic integral can be defined in terms of usual Lebesgue-Stieltjes integral and
integration by parts.

Let f, g ∈ D[a, b], b > a ≥ 0 and f has bounded variation. Using Lemma 6.7 we define the
integral

∫
(a,b] f(b− y)dg(y) by formal integration by parts∫

(a,b]
f(b− y)dg(y) = f(0−)g(b)− f((b− a)−)g(a)−

∫
(a,b]

g(y)df(b− y).

Now if
(
W (y)

)
y≥0

=
(
W (y, ω)

)
y≥0

is a Lévy process (it has paths in D) the definition above
with g(y) := W (y, ω), for each ω, provides a pathwise construction of the stochastic integral for
all ω: ∫

(a,b]
f(b− y)dW (y) = f(0−)W (b)− f((b− a)−)W (a)−

∫
(a,b]

W (y)df(b− y). (5)

From this definition and continuity theorem for characteristic functions we conclude that

log E exp
(

it
∫

(a, b]
f(b− y)dW (y)

)
=

∫
(a, b]

log E exp
(
itf(b− y)W (1)

)
dy, t ∈ R (6)

(see Lemma 5.1 in [15] for a similar argument). Let f∗ ∈ L2[a, b] and
(
W2(y)

)
y≥0

be a Brownian
motion. Then

− log E exp
(

it
∫

[a, b]
f∗(y)dW2(y)

)
= 2−1t2

∫
[a, b]

(f∗)2(y)dy, t ∈ R.

Hence the random variable
∫
[a,b] f

∗(y)dW2(y) has the same law as W2(1)
√∫

[a,b](f
∗)2(y)dy which

implies the moment formulae to be used in the sequel:

E
( ∫

[a,b]
f∗(y)dW2(y)

)2

=
∫

[a, b]
(f∗)2(y)dy, E

( ∫
[a,b]

f∗(y)dW2(y)
)4

= 3
( ∫

[a, b]
(f∗)2(y)dy

)2

.

(7)
Of course, all moments of odd orders equal zero.

3 Properties of the limit processes in Theorem 1.1

Recall that
(
W2(u)

)
u≥0

denotes a Brownian motion and, for α ∈ (1, 2),
(
Wα(u)

)
u≥0

denotes an
α-stable Lévy process such that Wα(1) has the characteristic function given in (4).

Let β > 0. The limit processes
(
Yα, β(u)

)
u≥0

defined by

Yα, β(u) :=
∫

[0, u]
(u− y)βdWα(y) = β

∫
[0, u]

(u− y)β−1Wα(y)dy (8)

are called the α-stable Riemann-Liouville processes or fractionally integrated α-stable processes
(see, for instance, [2]).
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We now establish some properties of the processes
(
Yα, β(u)

)
.

(P1) Their paths are continuous a.s.
This follows from the second equality in (8) and Lemma 6.8 (a).

(P2) They are self-similar with Hurst parameter β + α−1, i.e., for every c > 0(
Yα, β(cu)

)
u≥0

f. d.=
(
cβ+α−1

Yα, β(u)
)
u≥0

,

where f. d.= denotes the equality of finite-dimensional distributions (see [13] for an accessible
introduction to the theory of self-similar processes).

We only prove this property for two-dimensional distributions. For any 0 < u1 < u2 and any
α1, α2 ∈ R we have

β−1
(
α1Yα, β(cu1) + α2Yα, β(cu2)

)
= α1

∫
[0, cu1]

(cu1 − y)β−1Wα(y)dy

+ α2

∫
[0, cu2]

(cu2 − y)β−1Wα(y)dy

= cβ

∫
[0, u2]

(
α1(u1 − y)β−11[0,u1](y)

+ α2(u2 − y)β−1
)
Wα(cy)dy

d= cβ+α−1

∫
[0, u2]

(
α1(u1 − y)β−11[0,u1](y)

+ α2(u2 − y)β−1
)
Wα(y)dy

= β−1cβ+α−1(
α1Yα, β(u1) + α2Yα, β(u2)

)
.

where the second equality follows by the change of variable, and the third is a consequence of
the self-similarity with parameter α−1 of

(
Wα(u)

)
.

(P3) For fixed u > 0,

Yα, β(u) d=
∫

[0, u]
yβdWα(y) d=

(
uαβ+1

αβ + 1

)1/α

Wα(1).

While the first distributional equality follows from the fact that, for fixed u,(
Wα(u)−Wα(u− y)

)
y∈[0, u]

d=
(
Wα(y)

)
y∈[0, u]

,

the second is implied by the equality

log E exp
(
itYα, β(u)

)
=

∫
[0, u]

log E exp
(
ityβWα(1)

)
dy, t ∈ R.

(see (6)).
(P4) The increments of

(
Yα, β(u)

)
are neither independent, nor stationary.

Let 0 < v < u and α = 2. Since
(
W2(u)

)
has independent increments X2, β(v) and

∫
[v, u](u−

y)βdW2(y) are independent. Set

rβ(u, v) :=
( ∫

[0, v]

(
(u− y)β − (v − y)β

)2dy

)1/2

.
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It seems that the integral cannot be evaluated in terms of elementary functions. Fortunately we
only have to check that rβ(u, v) 6= 0, for some v < u. Using the inequality (x−y)2 ≥ 2−1x2−y2,
x, y ∈ R we conclude that

r2
β(u, v) ≥

∫
[0, v]

(
2−1(u− y)2β − (v − y)2β

)
dy =

1
2β + 1

(
2−1(u2β+1 − (u− v)2β+1)− v2β+1

)
.

There is a unique solution x∗ to the equation

x2β+1 − (x− 1)2β+1 = 2.

Taking any x > x∗ ∨ 1 and any v > 0 we have r2
β(xv, v) > 0. In view of the distributional

equality( ∫
[0, v]

(v−y)βdW2(y),
∫

[0, xv]

(
(xv−y)β−(v−y)β

)
dW2(y)

)
d=

((
v2β+1

2β + 1

)1/2

W2(1), rβ(xv, v)W2(1)
)

,

X2, β(v) and
∫
[0, xv]

(
(xv − y)β − (v − y)β

)
dW2(y) are strongly dependent. Therefore, X2, β(v)

and X2, β(xv)−X2, β(v) are not independent.
Let α ∈ (1, 2). If the increments were independent the continuous process

(
Yα, β(u)

)
would be

Gaussian (see Theorem 5 on p. 189 in [14]) which is not the case.
If the increments were stationary the characteristic function of Yα, β(u)−Yα, β(v) for 0 < v < u

would be a function of u− v. This is however not the case as is seen from formula

log E exp
(

it
(
Yα, β(u)−Yα, β(v)

))
=

∫
[0, u]

log E exp
(

it
(
(u−y)β−(v−y)β1[0, v](y)

)
Wα(1)

)
dy, t ∈ R.

Recall that, for α ∈ (0, 1),
(
Vα(u)

)
u≥0

denotes an inverse α-stable subordinator. Let β > 0.
The limit processes

(
Zα, β(u)

)
u≥0

defined by

Zα, β(u) :=
∫

[0, u]
(u− y)βdVα(y) = β

∫
[0, u]

(u− y)β−1Vα(y)dy,

where the integral is a pathwise Lebesgue-Stieltjes integral, will be called the fractionally inte-
grated inverse α-stable subordinators.

We now establish some properties of these processes.
(Q1) Their paths are continuous a.s.

Obvious.
(Q2) They are self-similar with Hurst parameter β + α.

This is implied by the self-similarity with index α of
(
Vα(u)

)
.

(Q3) The law of Zα, β(u) is uniquely determined by its moments

E
(
Zα, β(u)

)k = uk(α+β) k!
Γk(1− α)

k∏
j=1

Γ(β + 1 + (j − 1)(α + β))
Γ(j(α + β) + 1)

, k ∈ N, (9)

where Γ(·) is the gamma function. In particular,

Zα, β(1) d=
∫ R

0
e−cZα(t)dt, (10)
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where R is a random variable with the standard exponential law which is independent of(
Zα(u)

)
u≥0

a drift-free subordinator with no killing and the Lévy measure

να(dt) =
e−t/α

(1− e−t/α)α+1
1(0,∞)(t)dt,

and c := (α + β)/α.
From the results obtained in [27] it follows that

(
Vα(u)

)
is a local time at level 0 for the

2(1−α)-dimensional Bessel process. Therefore, (9) is nothing else but a specialization of formula
(4.3) in [17].

One can check that

Φα(x) := − log Ee−xZα(1) =
Γ(1− α)Γ(αx + 1)
Γ(α(x− 1) + 1)

− 1, x ≥ 0.

Formula (9) with u = 1 can be rewritten in an equivalent form

EZk
α, β(1) =

k!
(Φα(c) + 1) . . . (Φα(ck) + 1)

=
k!∏k

j=1(1− α + j(α + β))B(1− α, 1 + k(α + β))
, k ∈ N,

where B(·, ·) is the beta function, which, by Theorem 2(i) in [7], entails distributional equality
(10). From the inequality ∫ R

0
e−cZα(t)dt ≤ R,

and the fact that EeaR < ∞, for a ∈ (0, 1), we conclude that the law of Zα, β(1) has some finite
exponential moments and thereby is uniquely determined by its moments.
(Q4) Their increments are not stationary.

When α + β 6= 1 this follows from the fact that EZα,β(u) is a function of uα+β rather than
u. The case α + β = 1 follows by continuity.

In [26] it was shown that
(
Vα(u)

)
does not have independent increments. Although we

believe it is also the case for
(
Zα, β(u)

)
, we refrain from investigating this.

4 Proof of Theorem 1.1

Cases (A1)-(A3). The functional limit theorems

W (t)(u) :=
N(ut)− ut

b(t)
⇒ Wα(u), t →∞,

with case dependent b(t) and Wα(u), can be found, for instance, in Theorem 1b (i) [10].
For t > 0 set

Xt(u) :=
X(ut)−

∫
[0, ut] h(y)dy

b(t)h(t)
, u ≥ 0.

Also recall the notation

Yα, β(u) := β

∫
[0, u]

Wα(y)(u− y)β−1dy =
∫

[0, u]
(u− y)βdWα(y), u ≥ 0,
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if β > 0, and set Yα, 0(u) := Wα(u), u ≥ 0, if β = 0.
We proceed by showing that, in the subsequent analysis, we can replace h by a nondecreasing

and continuous on R+ function h∗ with h∗(0) = 0 and such that h∗(t) ∼ h(t), t → ∞. To this
end, we will use the two step reduction.

Suppose we have already proved that

X∗
t (u) :=

∫
[0, ut] h

∗(ut− y)dN(y)−
∫
[0, ut] h

∗(y)dy

b(t)h∗(t)
⇒ Yα, β(u), t →∞.

Now to ensure the convergence Xt(u) ⇒ Yα, β(u), t →∞, it suffices to check that, for any T > 0,

sup
u∈[0, T ]

∣∣∣∣ ∫
[0, ut]

(
h(ut− y)− h∗(ut− y)

)
dN(y)

∣∣∣∣
b(t)h(t)

P→ 0, t →∞, (11)

and

sup
u∈[0, T ]

∣∣∣∣ ∫
[0, ut]

(
h(y)− h∗(y)

)
dy

∣∣∣∣
b(t)h(t)

→ 0, t →∞. (12)

Step 1. We first prove an intuitively clear fact that the behaviour of h near zero does not
influence the asymptotics of Xt. In particular, if, given a > 0, we replace h by any càdlàg
function ĥ such that ĥ(t) = h(t) for t ≥ a the asymptotics of Xt will not change. Indeed,∣∣∣∣ ∫

[0, u]

(
h(t(u− y))− ĥ(t(u− y))

)
dyN(ty)

∣∣∣∣ =
∣∣∣∣ ∫

(u−a/t, u]

(
h(t(u− y))− ĥ(t(u− y))

)
dyN(ty)

∣∣∣∣
≤ sup

y∈[0, a]

∣∣h(y)− ĥ(y)
∣∣(N(ut)−N(ut− a)

)
.

Since h and ĥ are càdlàg, they are locally bounded. After noting that the local boundedness
entails the finiteness of the last supremum, and that in all cases b is regularly varying with
positive index, an appeal to Lemma 6.1 allows us to conclude that, for any T > 0,

sup
u∈[0, T ]

∣∣∣∣ ∫
[0, u]

(
h(t(u− y))− ĥ(t(u− y))

)
dyN(ty)

∣∣∣∣
b(t)

≤ sup
y∈[0, a]

∣∣h(y)− ĥ(y)
∣∣ sup
u∈[0, T ]

(
N(ut)−N(ut− a)

)
b(t)

P→ 0, t →∞. (13)

Arguing in a similar but simpler way we conclude that, for any T > 0,

sup
u∈[0, T ]

∣∣∣∣ ∫
[0, ut]

(
h(y)− ĥ(y)

)
dy

∣∣∣∣
b(t)

→ 0, t →∞. (14)

This justifies the claim. In particular, choosing a large enough we can make ĥ nondecreasing on
R+. Besides that, we will take ĥ such that ĥ(t) = 0 for t ∈ [0, b] for some b > 0 to be specified
later.
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Step 2. Set h∗(t) := Eĥ((t− θ)+), where θ is a random variable with the standard exponential
distribution. It is clear that ĥ(t) ≥ h∗(t), t ≥ 0. By Lemma 6.4, h∗ is continuous on R+ with
h∗(0) = 0 and h∗(t) ∼ ĥ(t) ∼ h(t), t →∞. Furthermore,∫

[0, t]

(
ĥ(y)− h∗(y)

)
dy ∼ h(t), t →∞,

which immediately implies

sup
u∈[0, T ]

∣∣∣∣ ∫
[0, ut]

(
ĥ(y)− h∗(y)

)
dy

∣∣∣∣
b(t)h(t)

=

∫
[0, T t]

(
ĥ(y)− h∗(y)

)
dy

b(t)h(t)
∼ T β

b(t)
→ 0, t →∞.

In combination with (14) the latter proves (12).
Now we intend to apply Lemma 6.3 with K1 = ĥ and K2 = h∗. Since

lim
t→∞

ĥ(t) + h∗(t)∫
[0, t]

(
ĥ(y)− h∗(y)

)
dy

= 2

and ∫
[0, T t]

(
ĥ(y)− h∗(y)

)
dy ∼ T βh(t), t →∞,

and in all cases b(t) is regularly varying with positive index, we have

sup
u∈[0, T ]

∣∣∣∣ ∫
[0, ut]

(
ĥ(ut− y)− h∗(ut− y)

)
dN(y)

∣∣∣∣
b(t)h(t)

=

sup
u∈[0, T ]

∫
[0, ut]

(
ĥ(ut− y)− h∗(ut− y)

)
dN(y)

b(t)h(t)
P→ 0, t →∞.

This together with (13) leads to (11).
By Potter’s bound (Theorem 1.5.6 (iii) in [11]) for any chosen A > 1, δ ∈ (0, αβ) if β > 0

and δ ∈ (0, 1/2) if β = 0 (we take α = 2 in cases (A1) and (A2)) there exists t0 such that

h∗α(ty)
h∗α(t)

≤ Ayαβ−δ,

whenever y ≤ 1 and ty ≥ t0. Choosing in the definition of ĥ b = t0, i.e., ĥ(t) = h∗(t) = 0 for
t ∈ [0, t0] we can and do assume that

h∗α(Tty)
h∗α(Tt)

≤ Ayαβ−δ and
h∗(Tt)
h∗(t)

≤ A
(
T β+δ ∨ T β−δ

)
=: C(T ), (15)

whenever T > 0, y ≤ 1, Tt ≥ t0 and t ≥ t0. The second inequality in (15) is just Potter’s bound.
Setting

ht(x) := h∗(tx)/h∗(t),
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using the fact that N(0) = 1 a.s. and integrating by parts, we have, for t > 0 and u > 0

X∗
t (u) =

∫
[0, u]

ht(u− y)dyW
(t)(y)

=
h∗(ut)

b(t)h∗(t)
+

∫
(0, u]

ht(u− y)dyW
(t)(y)

=
∫

(0, u]
W (t)(y)dy

(
− ht(u− y)

)
.

It suffices to show that1,∫
(0, u]

(
W (t)(y)−Wα(y)

)
dy

(
− ht(u− y)

) P→ 0, t →∞, (16)

in D under the J1 topology in cases (A1) and (A2) and under the M1 topology in case (A3),
and ∫

(0, u]
Wα(y)dy

(
− ht(u− y)

)
⇒

∫
(0, u]

Wα(y)dy

(
− (u− y)β

)
= Yα, β(u), t →∞. (17)

The convergence of finite dimensional distributions in (17) holds by Lemma 6.5 and the con-
tinuous mapping theorem (see the proof for case (A4) for more details). Therefore, as far as
relation (17) is concerned we only have to prove the tightness.
Cases (A1) and (A2). If lim

t→∞
xt = x in D under the J1 topology and x is continuous then, for

any T > 0, lim
t→∞

sup
u∈[0, T ]

|xt(u)− x(u)| = 0. Hence, using the monotonicity of ht we obtain

sup
u∈[0, T ]

∣∣∣∣ ∫
(0, u]

(
xt(y)− x(y)

)
dy

(
− ht(u− y)

)∣∣∣∣ ≤ sup
u∈[0, T ]

|xt(u)− x(u)|ht(T ) → 0, t →∞.

Since
(
W2(u)

)
is a Brownian motion which has a.s. continuous paths (16) follows by the con-

tinuous mapping theorem.
By Lemma 6.8 (b), for each t > 0, the process on the left-hand side of (17) has a.s. continuous

paths. Therefore we will prove that the convergence in (17) takes place under the uniform
topology in C[0,∞) which is more than was claimed in (17). To this end, it suffices to show
that the mentioned convergence holds in C[0, T ], for any T > 0. We can write, for any T > 0,∫

(0, Tu]
W2(y)dy

(
− ht(Tu− y)

)
=

h∗(Tt)
h∗(t)

∫
(0, u]

W2(Ty)dy

(
− hTt(u− y)

)
(5)
=

h∗(Tt)
h∗(t)

∫
(0, u]

hTt(u− y)dW2(Ty)

=: X̂t(u), u ∈ [0, 1]. (18)

1Although W (t) and Wα are not necessarily defined on a common probability space we can assume that by
virtue of Skorohod’s representation theorem.
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Hence it remains to check the tightness of
(
X̂t(u)

)
in C[0, 1]. With u, v ∈ [0, 1], u > v(

h∗(t)
h∗(Tt)

)4

E
(
X̂t(u)− X̂t(v)

)4 = E
( ∫

[0, v]

(
hTt(u− y)− hTt(v − y)

)
dyW2(Ty)

+
∫

[v, u]
hTt(u− y)dyW2(Ty)

)4

= E
( ∫

[0, v]

(
hTt(u− y)− hTt(v − y)

)
dyW2(Ty)

)4

+ 6E
( ∫

[0, v]

(
hTt(u− y)− hTt(v − y)

)
dyW2(Ty)

)2

E
( ∫

[v, u]
hTt(u− y)dyW2(Ty)

)2

+ E
( ∫

[v, u]
hTt(u− y)dyW2(Ty)

)4

= 3T 2

(( ∫
[0, v]

(
hTt(u− y)− hTt(v − y)

)2dy

)2

+ 2
∫

[0, v]

(
hTt(u− y)− hTt(v − y)

)2dy

∫
[v, u]

h2
Tt(u− y)dy +

( ∫
[v, u]

h2
Tt(u− y)dy

)2)
= 3T 2

( ∫
[0, v]

(
hTt(u− y)− hTt(v − y)

)2dy +
∫

[v, u]
h2

Tt(u− y)dy

)2

= 3T 2

( ∫
[v, u]

h2
Tt(y)dy − 2

∫
[0, v]

hTt(v − y)
(
hTt(u− y)− hTt(v − y)

))2

≤ 3T 2

( ∫
[v, u]

h2
Tt(y)dy

)2

.

Here the second equality follows since
(
W2(u)

)
has independent increments, and the moments of

odd orders of the integrals involved equal zero. The third equality is a consequence of (7). The
last inequality is explained by the fact that the functions hTt are nonnegative and nondecreasing.

Hence when Tt ≥ t0 and T ≥ t0 we have

E
(
X̂t(u)− X̂t(v)

)4 ≤ 3T 2 h∗4(Tt)
h∗4(t)

( ∫
[v, u]

h2
Tt(y)dy

)2 (15)

≤ 3T 2C4(T )A
( ∫

[v, u]
y2β−δdy

)2

=
3T 2C4(T )A
(2β − δ + 1)2

(
u2β−δ+1 − v2β−δ+1

)2
.

If u < v the same inequality holds. Hence, the required tightness follows by formula (12.51) and
Theorem 12.3 in [8].
Proof of (16) for case (A3). We first note that the functions ht are absolutely continuous
with densities

h′t(y) =
t
(
h∗(ty)− e−ty

∫
[0, ty] h

∗(x)exdx
)

h∗(t)
.

The renewal process N has only unit jumps. Hence, lim
t→∞

J(W (t)) = 0 a.s., where J(·) denotes

the maximum-jump functional defined in (28). Since W (t) M1⇒ Wα, t →∞, an appeal to Lemma
6.6 and the continuous mapping theorem completes the proof.

Before turning to the proof of (17) in case (A3) let us recall the following. The process(
Wα(u)

)
has no positive jumps, equivalently, the Lévy measure of Wα(1) is concentrated on the

negative halfline. Therefore, it follows from Theorem 25.3 in [31] and the fact that the function
x → (x∨1)γ , γ > 0 is submultiplicative, that the power moments of all positive orders of W+

α (1)
are finite2. Also it is well-known that

P{Wα(1) < −x} ∼ constx−α, x →∞. (19)
2Moreover, the exponential moments of all positive orders of Wα(1) are finite.
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For a formal proof one can use the explicit form of characteristic function of Wα(1), Theorem
8.1.10 in [11] and the fact that the right tail of the law of Wα(1) is very light (in particular, it
is clearly dominated by the left tail).
Proof of (17) for case (A3). We will prove that the convergence in (17) takes place in D
under the M1 topology. To this end, it suffices to show that the mentioned convergence holds
in D[0, T ], for any T > 0. Define X̂t(u) as in (18) but using Wα instead of W2. Then the task
reduces to proving the tightness of the so defined

(
X̂t(u)

)
in D[0, 1]. By Theorem 1 in [3], the

required tightness will follow once we have proved that

P{M
(
X̂t(u1), X̂t(u), X̂t(u2)

)
> ε} ≤ Lε−ν(u2 − u1)1+ρ, 0 ≤ u1 ≤ u ≤ u2 ≤ 1, (20)

for large enough t and some positive constants L, ν and ρ, where for x1, x2, x2 ∈ R M(x1, x2, x3) :=
0 if x2 ∈ [x1 ∧ x3, x1 ∨ x3], and := |x2 − x1| ∧ |x3 − x2|, otherwise.

We have

P
{
M

(
X̂t(u1), X̂t(u), X̂t(u2)

)
> ε

}
= P

{∣∣X̂t(u1)− X̂t(u)
∣∣ > ε,

∣∣X̂t(u2)− X̂t(u)
∣∣ > ε, X̂t(u) < X̂t(u1) ∧ X̂t(u2)

}
+ P

{∣∣X̂t(u1)− X̂t(u)
∣∣ > ε,

∣∣X̂t(u2)− X̂t(u)
∣∣ > ε, X̂t(u) > X̂t(u1) ∨ X̂t(u2)

}
+ P

{
X̂t(u1) ∧ X̂t(u2) > X̂t(u) + ε

}
+ P

{
X̂t(u1) ∨ X̂t(u2) < X̂t(u)− ε

}
= P

{
X̂t(u)− X̂t(u1) > ε, X̂t(u2)− X̂t(u) < −ε

}
+ P

{
X̂t(u)− X̂t(u1) < −ε, X̂t(u2)− X̂t(u) > ε

}
=: It(u1, u, u2) + Jt(u1, u, u2).

Using (18) and formula (6) with characteristic function of Wα(1) given by (4) we arrive at
the distributional equality

h∗(t)
h∗(Tt)

(
X̂t(u)− X̂t(u1)

)
=

∫
(0, u1]

(
hTt(u− y)− hTt(u1 − y)

)
dWα(Ty)

+
∫

(u1, u]
hTt(u− y)dWα(Ty)

d= Tα

(
Wα(1)

( ∫
(0, u1]

(
hTt(u− y)− hTt(u1 − y)

)αdy

)1/α

+ W ′
α(1)

( ∫
(u1, u]

hα
Tt(u− y)dy

)1/α)
d= TαWα(1)

( ∫
(0, u1]

(
hTt(u− y)− hTt(u1 − y)

)αdy

+
∫

(u1, u]
hα

Tt(u− y)dy

)1/α

=: TαWα(1)at(u1, u),
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where W ′
α(1) and Wα(1) are i.i.d. Similarly

h∗(t)
h∗(Tt)

(
X̂t(u2)− X̂t(u)

)
=

∫
(0, u]

(
hTt(u2 − y)− hTt(u− y)

)
dWα(Ty)

+
∫

(u, u2]
hTt(u2 − y)dWα(Ty)

d= Tα

(
Wα(1)

( ∫
(0, u]

(
hTt(u2 − y)− hTt(u− y)

)αdy

)1/α

+ W ∗
α(1)

( ∫
(u, u2]

hα
Tt(u2 − y)dy

)1/α)
=: Tα

(
Wα(1)bt(u, u2) + W ∗

α(1)ct(u, u2)
)
,

where Wα(1) and W ∗
α(1) are i.i.d. and Wα(1) is the same as in the previous display.

Using the second inequality in (15) and setting D(T ) := TαC(T ) we obtain, for large enough
t,

It(u1, u, u2) = P
{

Tα h∗(Tt)
h∗(t)

Wα(1)at(u1, u) > ε, Tα h∗(Tt)
h∗(t)

(
Wα(1)bt(u, u2) + W ∗

α(1)ct(u, u2)
)

< −ε

}
≤ P

{
Wα(1) > (at(u1, u)D(T ))−1ε, Wα(1)bt(u, u2) + W ∗

α(1)ct(u, u2) < −D−1(T )ε
}

≤ P
{
Wα(1) > (at(u1, u)D(T ))−1ε

}
P
{

W ∗
α(1)ct(u, u2) < −D−1(T )ε

(
1 +

bt(u, u2)
at(u1, u)

)}
≤ P

{
Wα(1) > (at(u1, u)D(T ))−1ε

}
P
{
W ∗

α(1) < −(ct(u, u2)D(T ))−1ε
}
.

In view of (19), there exists a positive constant q = q(ε) such that

P{W ∗
α(1) < −x} ≤ qx−α, (21)

whenever x ≥ ε(αβ−δ+1)1/α(A1/αD(T ))−1 (the constants A and δ were defined in the paragraph
that contains formula (15)). Further, for large enough t,

cα
t (u, u2) =

∫
[0, u2−u)

hα
Tt(y)dy

(15)

≤ A

∫
[0, u2−u]

yαβ−δdy =
A

αβ − δ + 1
(u2−u)αβ−δ+1 ≤ A

αβ − δ + 1
.

In view of this inequality (21) can be applied to estimate

It(u1, u, u2) ≤ P
{
W ∗

α(1) < −(ct(u, u2)D(T ))−1ε
}

≤ qDα(T )ε−αcα
t (u, u2) ≤

AqDα(T )
αβ − δ + 1

ε−α(u2 − u1)αβ−δ+1.

When β > 0 this crude bound suffices. When β = 0 we need a more refined estimate for
P
{
Wα(1) > (at(u1, u)D(T ))−1ε

}
. To this end, we first work towards estimating at(u1, u). Since

α > 1 and 1− δ ∈ (0, 1),

(x + y)α ≥ xα + yα and (x + y)1−δ ≤ x1−δ + y1−δ for all x, y ≥ 0.

Hence

aα
t (u1, u) ≤

∫
(0, u1]

(
hα

Tt(u− y)− hα
Tt(u1 − y)

)
dy +

∫
(u1, u]

hα
Tt(u− y)dy

=
∫

(u1, u]
hα

Tt(y)dy
(15)

≤ A

∫
(u1,u]

y−δdy ≤ A

1− δ

(
u1−δ − u1−δ

1

)
≤ A

1− δ
(u− u1)1−δ ≤ A

1− δ
(u2 − u1)1−δ. (22)
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Using (22) and Markov inequality we conclude that

P
{
Wα(1) > (at(u1, u)D(T ))−1ε

}
≤ E(W+

α (1))αDα(T )ε−αaα
t (u1, u)

≤ E(W+
α (1))αADα(T )

1− δ
ε−α(u2 − u1)1−δ.

Combining pieces together leads to the inequality

It(u1, u, u2) ≤
E(W+

α (1))αqA2D2α(T )
(1− δ)2

ε−2α(u2 − u1)2(1−δ),

which holds for large enough t in the case β = 0 and serves our needs as 1− δ > 1/2. Starting
with a trivial estimate

Jt(u1, u, u2) ≤ P
{
W ∗

α(1) > (at(u1, u)D(T ))−1ε
}
P
{
Wα(1) < −(ct(u, u2)D(T ))−1ε

}
,

we observe that Jt(u1, u, u2) is bounded from above by the same quantity as It(u1, u, u2). Sum-
marizing we have proved that (20) holds with L = 2E(W+

α (1))αqA2D2α(T )
(1−δ)2

, ν = 2α and ρ = 1− 2δ

when β = 0 and with L = 2AqDα(T )
αβ−δ+1 , ν = α and ρ = αβ − δ when β > 0.

Case (A4). We first note that the functional limit theorem

V (t)(u) := P{ξ > t}N(ut) J1⇒ Vα(u), t →∞,

was proved in Corollary 3.7 in [26].
We could have proceeded as above, by checking (16) and (17). However, in the present case

the situation is much easier. Indeed, for each t > 0, the process
(
X∗

t (u)
)

defined by

X∗
t (u) =

∫
(0, u]

V (t)(y)dy

(
− ht(u− y)

)
, u ≥ 0,

has nondecreasing paths (as the convolution of two nondecreasing functions). Recall further
that

(
Vα(u)

)
is a generalized inverse function of a stable subordinator. Since the paths of the

latter are right-continuous and strictly increasing,
(
Zα, 0(u)

)
:=

(
Vα(u)

)
has continuous and

nondecreasing sample paths. If β > 0,
(
Zα, β(u)

)
has continuous paths by Lemma 6.8. By

Theorem 3 in [9] the desired functional limit theorem will follow once we have established the
convergence of finite dimensional distributions.

We will only investigate the two-dimensional convergence. The other cases can be treated
similarly. Since X∗

t (0) = 0 a.s., we only have to prove that, for fixed 0 < u < v < ∞ and any
α1, α2 ∈ R,

α1X
∗
t (u) + α2X

∗
t (v) d→ α1Zα, β(u) + α2Zα, β(v), t →∞. (23)

For fixed w > 0 and each t > 0, define measures νt,w and νw on [0, w] by

νt,w(c, d] :=
h∗(t(w − c))− h∗(t(w − d))

h∗(t)
, 0 ≤ c < d ≤ w

and
νw(c, d] := (w − c)β − (w − d)β , 0 ≤ c < d ≤ w,

where β is assumed positive.
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Case β > 0. As t → ∞, the measures νt,w weakly converge on [0, w] to νw. Now relation (23)
follows immediately from the equality

α1X
∗
t (u) + α2X

∗
t (v) =

∫
(0, u]

V (t)(y)
(
α1νt,u(dy) + α2νt,v(dy)

)
+ α2

∫
(u, v]

V (t)(y)νt,v(dy), (24)

Lemma 6.5 and the continuous mapping theorem.
Case β = 0. Now, as t →∞, the measures νt,w weakly converge on [0, w] to δw (delta measure).
Using (24) and arguing as before we arrive at (23).

5 Extension to h’s defined on R

Let h : R → R be a right-continuous function with finite limits from the left. Unlike the situation
considered in the previous sections the corresponding shot noise process is not necessarily well-
defined. However we do not investigate the a.s. finiteness of X(t) in the most general situation.
Rather we prove that under appropriate assumptions on h which cover most of practically
interesting cases the result of Theorem 1.1 continues to hold.

Theorem 5.1. Let h : R → R be a right-continuous function with finite limits from the left such
that

h(x) ∼ xβ`∗(x), x →∞,

for some β ∈ [0,∞) and some `∗ slowly varying at ∞. Assume also that h is nondecreasing in
the neighborhood of +∞, and nondecreasing and integrable in the neighborhood of −∞. Then
the result of Theorem 1.1 is valid.

Proof. It suffices to prove that, for any T > 0 and any c > 0,

sup
u∈[0, T ]

∑
k≥0 h(ut− Sk)1{Sk>ut}

tc
=

sup
u∈[0, T t]

∑
k≥0 h(u− Sk)1{Sk>u}

tc

=

sup
u∈[0, T t]

∑
k≥0 h(u− SN(u)+k)

tc
P→ 0, t →∞.

As it was shown at the beginning of the proof of Theorem 1.1, without loss of generality, we
can modify h on any finite interval in any way that would lead to a right-continuous resulting
function with finite limits from the left. In particular, we will assume that h̃ : [0,∞) → [0,∞)
defined by h̃(t) = h(−t), t ≥ 0, is nonincreasing and h̃(0+) = 1. Note that the integrability and
monotonicity of h in the vicinity of −∞ entail lim

t→∞
h̃(t) = 0.

The random function u → SN(u)+k − u attains a.s. its local minima Sk+1+j − Sj at points
Sj , j ∈ N. Hence

sup
u∈[0, T t]

∑
k≥0

h̃(SN(u)+k − u) = sup
1≤j≤N(Tt)−1

∑
k≥0

h̃(Sk+1+j − Sj) =: sup
1≤j≤N(Tt)−1

τj .

Note that the sequence (τj)j∈N0 is stationary. Since
∫
[0,∞) h̃(y)dy < ∞ implies

∫
[0,∞) h̃p(y)dy <

∞ for any p > 1, we conclude that Eτp
0 < ∞ for any p > 0, by Theorem 3.7 in [1].

By the weak law of large numbers, for any δ > 0, lim
t→∞

P{N(Tt) > Tt(µ−1 + δ)} = 0, where

µ−1 is interpreted as 0 when µ = ∞. Choose p > 0 such that pc > 1. Then, for any ε > 0,

P
{

sup
1≤j≤[Tt(µ−1+δ)]

τj > εtc
}
≤

[Tt(µ−1+δ)]∑
j=1

P{τ0 > εtc} ≤ [Tt(µ−1 + δ)]ε−pt−pcEτp
0 → 0, t →∞,
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by Markov inequality. Therefore, as t →∞,

P{ sup
1≤j≤N(Tt)−1

τj > εtc} ≤ P{ sup
1≤j≤[Tt(µ−1+δ)]

τj > εtc}+ P{N(Tt) > Tt(µ−1 + δ)} → 0.

The proof is complete.

6 Appendix

6.1 Probabilistic tools

Lemma 6.1. For any 0 ≤ a < b, any T > 0 and any c > 0

sup
u∈[0, T ]

(
N(ut− a)−N(ut− b)

)
tc

P→ 0, t →∞. (25)

Remark 6.2. A perusal of the proof reveals that the rate of convergence to zero in (25) is not
optimal. However, the present form of (25) serves our needs. In general, it seems very likely that
the actual rate of a.s. convergence in (25) is the same as in Theorem 2 in [34]. Note however
that the cited result assumed that KT →∞ as T →∞ whereas we need KT = const.

Proof. We start by writing

sup
u∈[0, T ]

(
N(ut− a)−N(ut− b)

)
= sup

u∈[0, T ]

(
N(ut− a)−N(ut− b)

)
1[b−1t,∞)(u)

+ sup
u∈[0, T ]

(
N(ut− a)−N(ut− b)

)
1[0, b−1t)(u)

= sup
u∈[0, T t−b]

(
N(u + b− a)−N(u)

)
+ sup

u∈[0, T ]
N(ut− a)1[0, b−1t)(u)

≤ sup
u∈[0, T t−b]

(
N(u + b− a)−N(u)

)
+ N(b− a).

To prove the equality

sup
u∈[0, SN(Tt−b)−1]

(
N(u + b− a)−N(u)

)
= sup

0≤k≤N(Tt−b)−1

(
N(Sk + b− a)−N(Sk)

)
just note that obviously the right-hand side does not exceed the left-hand side, and that while
u is traveling from Sk to Sk−1− the numbers of Sj ’s falling into the interval (u, u + b − a] can
only decrease. In general, the following estimate holds true:

sup
0≤k≤N(Tt−b)−1

(
N(Sk + b− a)−N(Sk)

)
≤ sup

u∈[0, T t−b]

(
N(u + b− a)−N(u)

)
≤ sup

0≤k≤N(Tt−b)

(
N(Sk + b− a)−N(Sk)

)
=: Z(t).

A possible overestimate here is due to taking into account the extra interval (Tt− a, SN(Tt−b) +
b− a].

By the weak law of large numbers, for any δ > 0,

lim
t→∞

P{N(Tt− b) > Tt(µ−1 + δ)} = 0, (26)
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where we set µ−1 to equal zero if µ = Eξ = ∞. It is known that N(b − a) has exponential
moments of all orders (see, for instance, Theorem 2 in [6]). Hence, for any γ > 0

P{N(b− a) > x} = O(e−γx), x →∞.

Now we conclude that, for any ε > 0,

P{ max
0≤k≤[Tt(µ−1+δ)]

(
N(Sk + b− a)−N(Sk)

)
> εtc}

≤
[Tt(µ−1+δ)]∑

k=0

P{N(Sk + b− a)−N(Sk) > εtc}

= ([Tt(µ−1 + δ)] + 1)P{N(b− a)− 1 > εtc} = O
(
t exp(−γεtc)

)
= o(1), t →∞. (27)

Therefore, in view of (26) and (27),

P{Z(t) > εtc} = P{Z(t) > εtc, N(Tt− b) > Tt(µ−1 + δ)}
+ P{Z(t) > εtc, N(Tt− b) ≤ Tt(µ−1 + δ)}
≤ P{N(Tt− b) > Tt(µ−1 + δ)}
+ P{ max

0≤k≤[Tt(µ−1+δ)]

(
N(Sk + b− a)−N(Sk)

)
> εtc}

= o(1), t →∞.

Lemma 6.3. Let K1,K2 : R+ → R+ be nondecreasing functions such that K1(t) ≥ K2(t),
t ∈ R+. Assume that

lim sup
t→∞

K1(t) + K2(t)∫
[0, t]

(
K1(y)−K2(y)

)
dy

≤ const.

Then, for any c > 0 and any T > 0,

sup
u∈[0, T ]

∫
[0, ut]

(
K1(ut− y)−K2(ut− y)

)
dN(y)

tc
∫
[0, T t]

(
K1(y)−K2(y)

)
dy

P→ 0, t →∞.

Proof. We use the decomposition∫
[0, t]

(
K1(t− y)−K2(t− y)

)
dN(y) =

∫
[0, [t]]

+
∫

[[t], t]
=: I1(t) + I2(t).

For I2(t) we have

I2(t) ≤
∫

[[t], t]
K1(t− y)dN(y) ≤ K1(t− [t])

(
N(t)−N([t])

)
≤ K1(1)

(
N(t)−N(t− 1)

)
.

Hence, by Lemma 6.1, for any T > 0,

t−c sup
u∈[0, T ]

I2(ut) P→ 0, t →∞.

17



It remains to consider I1(t):

I1(t) = K1(t)−K2(t) +
[t]−1∑
j=0

∫
(j, j+1]

(
K1(t− y)−K2(t− y)

)
dN(y)

≤ K1(t)−K2(t) +
[t]−1∑
j=0

(
K1(t− j)−K2(t− j − 1)

)(
N(j + 1)−N(j)

)
≤ K1(t) + sup

s∈[0, [t]]

(
N(s + 1)−N(s)

) [t]−1∑
j=0

(
K1(t− j)−K2(t− j − 1)

)
≤ K1(t) + sup

s∈[0, [t]]

(
N(s + 1)−N(s)

) [t]−1∑
j=0

(
K1([t] + 1− j)−K2([t]− 1− j)

)
= sup

s∈[0, [t]]

(
N(s + 1)−N(s)

)( ∫
[2, [t]]

(
K1(y)−K2(y)

)
dy + O

(
K1(t) + K2(t)

))
.

Hence, for any T > 0,

sup
u∈[0, T ]

I1(ut) ≤ sup
u∈[0, T ]

(
N(ut+1)−N(ut)

)( ∫
[2, [Tt]]

(
K1(y)−K2(y)

)
dy+O

(
K1(Tt)+K2(Tt)

))
,

and, by Lemma 6.1,
sup

u∈[0, T ]
I1(ut)

tc
∫
[0, T t]

(
K1(y)−K2(y)

)
dy

P→ 0, t →∞.

The proof is complete.

6.2 Analytic tools

Lemma 6.4. Let f : R+ → R+ be a nondecreasing function which varies regularly at ∞ with
index γ ≥ 0, and f(0) = 0. Let θ be a random variable with finite power moments of all positive
orders whose absolutely continuous law is concentrated on R+. Then f∗ : R+ → R+ defined
by f∗(t) := Ef((t − θ)+) is a continuous function with f∗(0) = 0 and such that f∗(t) ∼ f(t),
t →∞. In particular, f∗ varies regularly at ∞ with index γ. Furthermore,∫

[0, t]

(
f(y)− f∗(y)

)
dy ∼ Eθf(t), t →∞.

Proof. The fact f∗(0) = 0 is trivial. The continuity (even differentiability) of f∗ follows from
the representation

f∗(t) = f(0)e−t + e−t

∫
[0, t]

f(y)eydy.

By dominated convergence, lim
t→∞

f∗(t)/f(t) = 1. This entails the regular variation of f∗. Further∫
[0, t]

(
f(y)− f∗(y)

)
dy = E

∫
[(t−θ)+, t]

f(y)dy =
∫

[0, t]
f(y)dyP{θ > t}+ E1{θ≤t}

∫
[t−θ, t]

f(y)dy.

18



As t → ∞, the first term on the right-hand side tends to 0, by Markov inequality. The second
term can be estimated as follows

Ef(t− θ)θ1{θ≤t}

f(t)
≤

E1{θ≤t}
∫
[t−θ, t] f(y)dy

f(t)
≤ Eθ.

Since, as t →∞, the term on the left-hand side converges to Eθ, by dominated convergence, the
proof is complete.

Lemma 6.5. Let 0 ≤ a < b < ∞. Assume that lim
n→∞

xn = x in D in the J1 or M1 topology.

Assume also that, as n →∞, finite measures νn converge weakly on [a, b] to a finite measure ν,
and that the limiting measure ν is continuous (nonatomic). Then

lim
t→∞

∫
[a, b]

xn(y)νn(dy) =
∫

[a, b]
x(y)ν(dy).

If x is continuous at point c ∈ [a, b], and ν = δc is the Dirac measure at point c then

lim
n→∞

∫
[a, b]

xn(y)νn(dy) = x(c).

Proof. Since the convergence in the J1 topology entails the convergence in the M1 topology, it
suffices to investigate the case when lim

n→∞
xn = x in the M1 topology.

Since x ∈ D[a, b] the set Dx of its discontinuities is at most countable. By Lemma 12.5.1 in [37],
convergence in the M1 topology implies local uniform convergence at all continuity points of the
limit. Hence E := {y : there exists yn such that lim

n→∞
yn = y, but lim

n→∞
xn(yn) 6= x(y)} ⊆ Dx,

and, if ν is continuous, we conclude that ν(E) = 0. If x is continuous at c and ν = δc then
c /∈ E, hence ν(E) = 0. Now the statement follows from Lemma 2.1 in [12].

For x ∈ D[0, T ], T > 0, define the maximum-jump functional

J(x) := sup
t∈[0, T ]

|x(t)− x(t−)|. (28)

Lemma 6.6. Let lim
n→∞

xn = x in the M1 topology in D[0, T ], and lim
n→∞

J(xn) = 0. For n ∈ N let

fn : R+ → R+ be nondecreasing and absolutely continuous functions with fn(0) = 0. Define

yn(u) :=
∫

[0, u]

(
xn(y)− x(y)

)
d
(
− fn(u− y)

)
, y(u) := 0, u ∈ [0, T ].

Then lim
n→∞

yn = y in the M1 topology in D[0, T ].

Proof. For z ∈ D[0, T ] denote by Π(z) the set of all parametric representations of z (see p. 80-82
in [37] for the definition). Since lim

n→∞
xn = x, Theorem 12.5.1 (i) in [37] implies that we can

choose parametric representations (u, r) ∈ Π(x) and (un, rn) ∈ Π(xn), n ∈ N, such that

lim
n→∞

sup
t∈[0, 1]

|un(t)− u(t)| = 0 and lim
n→∞

sup
t∈[0, 1]

|rn(t)− r(t)| = 0.

Furthermore, according to the proof of Lemma 4.3 in [28], we can assume that r(t) is absolutely
continuous with respect to the Lebesgue measure and that

x(r(t))r′(t) = u(t)r′(t) a.e. on [0, 1], (29)
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where r′ is the derivative of r.
Clearly, (y, r) ∈ Π(y). By Lemma 6.8(b), the functions yn, n ∈ N, are continuous. Hence,

(yn(r), r) ∈ Π(yn), n ∈ N, and it suffices to prove that

lim
n→∞

sup
t∈[0, 1]

|yn(r(t))| = 0.

We have

yn(r(t)) =
∫

[0, r(t)]

(
xn(y)− x(y)

)
d
(
− fn(r(t)− y)

)
=

∫
[0, t]

(
xn(r(y))− x(r(y))

)
d
(
− fn(r(t)− r(y))

)
=

∫
[0, t]

(
xn(r(y))− u(y)

)
d
(
− fn(r(t)− r(y))

)
+

∫
[0, t]

(
u(y)− x(r(y))

)
r′(y)f ′n(r(t)− r(y))dy

(29)
=

∫
[0, t]

(
xn(r(y))− u(y)

)
d
(
− fn(r(t)− r(y))

)
.

From the proof of Lemma 4.2 in [28] it follows that

lim
n→∞

sup
t∈[0, 1]

|xn(r(t))− u(t)| = 0,

whenever lim
n→∞

xn = x and lim
n→∞

J(xn) = 0. Hence, as n →∞,

sup
t∈[0, 1]

|yn(r(t))| ≤ sup
t∈[0, 1]

sup
y∈[0, t]

|xn(r(y))− u(y)|fn(r(t)) = sup
t∈[0, 1]

|xn(r(t))− u(t)|fn(T ) → 0.

Lemma 6.7. Let F and G be left- and right-continuous functions of locally bounded variation,
respectively. Then, for any real a < b,∫

(a, b]
F (y)dG(y) = F (b+)G(b)− F (a+)G(a)−

∫
(a, b]

G(y)dF (y)

Proof. This follows along the lines of the proof of Theorem 11 on p. 222 in [32] which treats
right-continuous functions F and G.

Lemma 6.8. (a) Let f : R+ → R+ be a continuous and monotone function and g : R+ → R
be any locally bounded function such that the convolution f ? g(x) :=

∫
[0, x] f(x − y)g(y)dy is

well-defined and finite. Then f ? g is continuous on R+.
(b) Let g : R+ → R+ be a continuous and nondecreasing function and f : R+ → R be any locally
bounded function. Then the Riemann-Stieltjes convolution f ? g(x) :=

∫
[0, x] f(x − y)dg(y) is

continuous on R+.

Proof. (a) With ε > 0 write for any x ≥ 0∣∣f ? g(x + ε)− f ? g(x)
∣∣ ≤

∫
[0, x]

(
f(x + ε− y)− f(x− y)

)∣∣g(y)
∣∣dy

+
∫

[x, x+ε]
f(x + ε− y)

∣∣g(y)
∣∣dy
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As ε → 0 the first integral goes to zero by monotone convergence. The function f must be
integrable in the neighborhood of zero. With this at hand it remains to note that the second
integral does not exceed

sup
y∈[x, x+ε]

|g(y)|
∫

[0, ε]
f(y)dy → |g(x+)| × 0 = 0, ε → 0.

The case ε < 0 can be treated similarly.
(b) With ε ∈ (0, 1) write for any x ≥ 0∣∣f ? g(x + ε)− f ? g(x)

∣∣ =
∫

[0, x]
f(y)d

(
− g(x + ε− y) + g(x− y)

)
+

∫
[x, x+ε]

f(y)d
(
− g(x + ε− y)

)
The total variations of the integrators of the first integral are uniformly bounded. Furthermore,
in view of the continuity of g, as ε → 0, these integrators converge (pointwise) to zero. Hence,
as ε → 0 the first integral goes to zero by Helly’s theorem for Lebesgue-Stieltjes integrals. The
second integral does not exceed

sup
y∈[x, x+ε]

|f(y)|
(
g(ε)− g(0)

)
→ |f(x+)| × 0 = 0, ε → 0.

The case ε ∈ (−1, 0) can be treated similarly.
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[23] Klüppelberg, C. and Mikosch, T. (1995). Explosive Poisson shot noise processes with applications to
risk reserves. Bernoulli. 1, 125–147.
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