do.unicyb.kiev.ua

  • Збільшення розміру шрифта
  • Звичайний розмір шрифта
  • Зменшити розмір шрифта

Простори \(F_{\psi}(\Omega)\) випадкових величин та їх застосування

Друк PDF

12 квітня 2013 року о 14 год 10 хв

 

Розглядаються банахові простори випадкових величин \(F_{\psi}(\Omega)\), тобто простори норма в яких  визначається  у такий спосіб

\( \displaystyle \|\xi \|= \sup_{u \geq 1} \frac{\left(\mathbb{E}|\xi|^u\right)^{1/u}}{\psi(u)}\),

де \(\psi(u) -  \) додатня, монотонно зростаюча функція, така, що  \(\psi(u) \to \infty,   u \to \infty.  \)

Вивчаються властивості процесів у цих просторах. Наводиться застосування отриманих результаті, зокрема знаходиться надійність та точність підрахунку інтегралів, що залежать від параметра, методом Монте-Карло.

Доповідач: Млавець Юрій Юрійович (Ужгородський Національний Університет, науковий керівник - Ю. В. Козаченко)

Дата проведення: 12 квітня 2013 року о 14 год 10 хв.

Місце проведення : 221 аудиторія