RANDOM WALKS IN THE HIGH-DIMENSIONAL LIMIT I
ZAKHAR KABLUCHKO AND ALEXANDER MARYNYCH

AsstrACT. We prove limit theorems for random walks with n steps in the d-dimensional Eu-
clidean space as both n and d tend to infinity. One of our results states that the path of such a
random walk, viewed as a random metric space with the induced Euclidean metric, converges in
probability in the Gromov-Hausdorff sense to the Wiener spiral, as d,n — co. Another group of
results describes various possible limit distributions for the squared distance between the ran-

dom walker at time #n and the origin.

1. INTRODUCTION

The purpose of the present paper is to study asymptotic properties of random walks with n
steps in the d-dimensional space IR? as both parameters, # and d, tend to infinity. To be more
concrete, consider a d-dimensional random walk whose increments are independent identi-
cally distributed (i.i.d.) random vectors with the uniform distribution on the unit sphere $%1.
In the regime when the dimension d is fixed and the number of steps n tends to infinity,
Donsker’s invariance principle implies that such random walk converges, after appropriate
normalization, to the d-dimensional Brownian motion. But how does the path of the random
walk look like if d also tends to infinity? It is well known that, as d — oo, the angle between
two independent random vectors sampled uniformly on the unit sphere $¢~! tends to 7/2 in
probability; see [19, Remark 3.2.5] or [18, Theorem 4] for stronger results. This suggests that,
informally speaking, the high-dimensional scaling limit of the random walk should be a curve
(in an infinite dimensional Hilbert space) obtained by gluing together infinitely many mutually
orthogonal infinitesimal increments.

A well-known curve of this type is the Wiener spiral (or the crinkled arc) introduced by Kol-
mogorov [16]. It is defined as the set W := {Io;: 0 < t < 1} of indicator functions of the inter-
vals [0, ], considered as a subset of the Hilbert space L?[0, 1] and endowed with the induced L?-
metric. As a metric space, the Wiener spiral is isometric to the interval [0, 1] endowed with the
distance d(t,s) = V|t —s|. The Wiener spiral can be thought of as a curve (Ve)te[o,1] = (Ljo,1))eef0,1]
in the Hilbert space L?[0,1]. It is easy to check that any two “chords” Yy — Vx and ¥, — y, with

0 <x<yp<u<wv<1 are orthogonal; see [11, Problems 5,6] and [13} [20] for results on the
1
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uniqueness of the curve having this property. If (B;);c[o,1] is a standard Brownian motion de-
fined on some probability space (Q,F,P), then the set of random variables {B; : t € [0,1]},
considered as a deterministic subset of LZ(Q,.F, IP), is isometric to the Wiener spiral.

In Section 2| we shall state conditions under which the path of the random walk, viewed
as a random metric space, converges to the Wiener spiral in the Gromov-Hausdorff sense. In
Section [3] we shall state results on the limit distribution of the distance between the random
walker at time # and the origin. Proof are collected in Sections [4and

The present paper deals with random walks having finite second moments. The case of

random walks with infinite second moment will be treated in the follow-up work [14].

2. CONVERGENCE IN THE GROMOV-HAUSDORFF SENSE

2.1. Convergence of random walks to the Wiener spiral. For every d € N we consider a ran-

dom walk in IR? whose increments Xid),X;d),... are independent copies of a d-dimensional

random vector X(?), The random walk is denoted by

(1) sii=0, sWi=xVi1x keN.
The components of the random vectors de) and S;d) are denoted by de) = (Xfi),...,Xf{?) and
S;d) = (sffi),...,sf‘f}), respectively. In what follows, let || - || denote the Euclidean norm in RY

and let (-,-) be the standard inner product in RY. We impose the following conditions on the

increments, which we assume to hold for all 4 € IN.

(a) The increments are centered and normalized, that is

(2) EXYD =0, E|IXD|?=1.
(b) The components of X?) are mutually uncorrelated, that is,

(3) EX)X\1=0, jke(l...d), j=k ieN.
(c) The sequence (]| X(?]|?) en is uniformly integrable, that is

(4) im suplli[llX(d)”2 ﬂ{lIX"’”IIZ>A}] =0.

1
A—>oc0 deIN
(d) The individual components of X(4) are negligible in the following sense:
. ()2 _
(5) lim madeE(Xl’k) =0.

Example 2.1 (Increments with i.i.d. components). Let &;,&,,... be i.i.d. random variables with
E& =0, IEZ;'l2 = 1. If we put X@) .= (&1,...,&4)/Vd, then conditions (a)—(d) are satisfied.
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Example 2.2 (Rotationally invariant increments). Let X(¢) be a random vector in R? with ro-
tationally invariant distribution. This means that X(¥ = R U@ where U@ is uniformly
distributed on the unit sphere in R?, and R > 0 is a random variable independent of U?.
If E(R@)? =1 for all d € N and the sequence ((R/)?);c is uniformly integrable, then con-
ditions (a)—(d) are satisfied. In particular, (R1)) o are allowed to be identically distributed

(with finite second moment).

Example 2.3 (Random walks jumping along the coordinate axes). The following model gen-
eralizes the simple random walk on Z%. Let eq,-..,e4 denote the standard orthonormal ba-
sis of R? and let V@) be a random vector distributed uniformly on the set {e,...,e4}, that is
PV = ej] = 1/d for all j € {1,...,d}. Put X .= Ry where R is a random variable
which is independent of V(@ and satisfies ER@ = 0 and IE(R@)2 =1, for all d € N. If the se-
quence (RD)2) o is uniformly integrable, then conditions (a)—(d) are satisfied. In particular,
taking R to be uniformly distributed on {+1, -1}, we recover the simple symmetric random
walk on Z¢4.

Let n = n(d) be an arbitrary sequence of positive integers such that n(d) — oo, as d — .
By default, the notation d — oo implies that also n = n(d) — co. We regard the image of the
random walk with 7 steps in R? as a finite random metric space. More precisely, let M be the

metric space consisting of the points
(6) 0,8 \m,..., s\

and endowed with the metric induced by the Euclidean metric on R?. Our first main result
states that, with probability converging to 1 as d — oo, the random metric space IM; becomes
close, in the sense of the Gromov-Hausdorff distance to be defined below, to the Wiener spiral
W defined in Section 1} Note that W is a deterministic metric space meaning that, in the high-
dimensional limit, the random walk “freezes” (i.e., loses its randomness).

The Gromov-Hausdorff distance dgy(Eq, E,) between two compact metric spaces E; and E,
is defined as the infimum of dy(¢;(E1), ¢2(E;)), where the infimum is taken over all metric
spaces (M, p) and all isometric embeddings ¢; : Ey = M and ¢, : E, —» M, and dy denotes the
Hausdorff distance between compact subsets of M defined by

dy(A,B)=inf{r>0: A c U,(B),BC U,(A).

Here, U,(A) = {m € M : p(A,m) < r} is the r-neighborhood of A in M. For details, we refer to

Chapter 7 of [3]]. It is known that the set of isometry classes of compact metric spaces, endowed
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with the Gromov-Hausdorff distance, becomes a complete separable metric space, called the

Gromov-Hausdorff space. We are now ready to state our first result.

Theorem 2.4. Let n = n(d) be an arbitrary sequence of positive integers such that n(d) — oo, as
d — oo. Suppose that conditions (a)—(d) are fulfilled. Then, as d — oo, the random metric space M,
considered as a random point in the Gromov-Hausdorff space, converges in probability to the Wiener
spiral W. That is to say, for every € > 0,

lim ]P[dGH(MdJW) > 8] =0.

d—co

The proof of Theorem 2.4 will be given in Sections[4.1]and We shall also verify that the
claim stays in force if IM, is replaced by the polygonal line interpolating consecutive points

in (6), that is, for the metric space M"" given by

n—1 S(d) S(d)
mcont .— z_’ i+l ,
‘ U[vz va]

i=0

where [a,b] c R? is the closed segment connecting a,b € RY. As before, the space MY is

endowed with the induced Euclidean metric on R?.

Corollary 2.5. Under the same assumptions as in Theorem [2.4} for every e > 0,

dlim Pldou(M$™, W) > ¢] = 0.

2.2. Convergence of high-dimensional stochastic processes. In this section we state a result
which is similar in spirit to Theorem but applies to a different class of stochastic pro-
cesses. Let K be an arbitrary index set and X = (X(t));cgx be a real-valued stochastic process
with EX(t) = 0 and E(X(t))? < oo for all t € K. We suppose that p(s, t) := /Var(X(s) — X(t))

defines a metric on K which turns K into a compact metric space and that the process X has

a.s. continuous sample paths on (K,p). Finally, we suppose that E[sup,.x(X(t))?] < co. Let

(X1(#))tek, (X2(t))sek,--- be independent copies of the process X. For every d € IN we consider

the R?-valued stochastic process

(Xq(2),..., Xq4(t))
Vd

Theorem 2.6. The random metric space Ky := {X,4(t) : t € K} c RY, endowed with the induced

X,(t) = eRY, teKk.

Euclidean metric, converges a.s. (as d — oo) to the deterministic metric space (K, p) in the Gromov-

Hausdorff sense. That is to say,

IP[lim den(Ky, K)= 0] = 1.

d—oo
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Example 2.7. Let (X(t))e[0,1] be the standard Brownian motion. Then, (X4(f)):e[o,1] is a stan-
dard d-dimensional Brownian motion multiplied by 1/Vd. Theorem implies that the ran-
dom metric space {X, : t € [0,1]) € RY, viewed as a random point in the Gromov-Hausdorff

space, converges a.s. to the Wiener spiral W.

3. CENTRAL LIMIT THEOREMS FOR THE SQUARED NORM

In this section we state distributional limit theorems for the squared norm ||S,(1 )||2, asd — oo,

in three models presented in Examples and of Section Recall that all the
corresponding random walks satisfy the assumptions (a)-(d) and, thus, converge to the Wiener
spiral. However, the distributional behaviour is more sensitive to the details of each of the
models and the corresponding distributional limit theorems are different. As before, n = n(d)

is an arbitrary sequence of positive integers such that n(d) — oo, as d — oo.

3.1. Model 1: Random walks whose increments have i.i.d. components. Recall that in this
model (‘fi,j)f,ojzl are independent copies of a random variable & such that EE = 0 and E&2 =1,

and for every d € IN the increments of a d-dimensional random walk (1) are given by

ng) :: (51‘,1;---,51‘,(1), [eN.
\d

Theorem 3.1. In the setting just described suppose additionally that EE* < co. Then,

ISP - v, N(0,1).
2n?/d d—o
Here and in what follows, N(0,52) denotes the centered normal distribution with variance
02, and - denotes weak convergence of probability measures (convergence in distribution).
In the next theorem we treat the case when &2 has infinite second moment. More precisely, we
suppose that £2 belongs to the domain of attraction of an a-stable distribution with a € (1,2).

This means that the independent copies of &, denoted by (&;):2,, satisfy

E 4t El-m

(7)

m/aL(m) m—eo 7

for some slowly varying function L and a zero-mean random variable ¢, having a spectrally

positive a-stable distribution.

Theorem 3.2. Suppose that (7)) holds for some a € (1, 2).
(a) If n> d7az+o for some 6 > 0 and all sufficiently large d, then

(d)2 _
ISn W =n v io,1),
2n2/d d—oo
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(b) Ifn< d a0 for some 6 > 0 and all sufficiently large d, then

d
[T .
A1 (nd) /2L (nd) d—eo "

3.2. Model 2: Random walks with rotationally invariant increments. We shall further spe-
cialize Example by assuming additionally that the distribution of R(?) is the same for all
d € N. Thus, for every d € N we consider a random walk (T) in R? whose increments are given
by

xD=ru"”, ieN,
where

e the radial components (Ri);?il
able R with ER? = 1;

e the directional components (Ui( ));?21 are i.i.d. random vectors uniformly distributed on

are independent copies of a non-negative random vari-

the unit sphere in R?;
e (R;)?2, and (Ui(d));?il are independent.

Theorem 3.3. In the setting just described, suppose additionally that ER* < co.

(a) Iflimy_,o, n/d = 0 and R is not deterministic, then

)2 _
IS 1= N0, var (R2))

\/ﬁ d—o0

(b) Iflimy_,,, n/d = oo or R is deterministic, then

(d)2 _
15w W=m v \i0,1).
2n2/d d—o

(c) If n ~yd for some constant y € (0, 00), then

(d)))2
S —
I15n W7 =1 w, N(0, 2y + Var (R?)).

\/ﬁ d—oo

Remark 3.4. Let us mention known results for random walks with fixed number of steps.
Stam [18, Theorem 4 and p. 227] showed that if R = 1 is deterministic and m € IN is fixed,

then "
2 _
Sm A —m - w, N(0,1).
2m(m—1)/d d—e
On the other hand, if R is not deterministic and m € IN is fixed, then it follows from [18|
Theorem 4] that

lIs\)2 d%; R2+.. +R%,
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Let us now consider the case when R? belongs to the domain of attraction of an a-stable
distribution with a € (1,2) meaning that

R4 4R2on o

—>
nl/aL(n) oo &

(8)

for some slowly varying function L and a zero-mean random variable C, having a spectrally

positive a-stable distribution.

Theorem 3.5. Suppose that (8) holds for some a € (1, 2).
(a) If n>d==*° for some 6 > 0 and all sufficiently large d, then
(d)2 _
ISw "=m v \0,1).
2n2/d d—oo
(b) If n < d==27% for some 6 > 0 and all sufficiently large d, then
57112 =
nt/aL(n) d—oo @

We shall comment on the missing “critical” case of this theorem in Remark

3.3. Model 3: Random walks jumping along the coordinate axes. As we did in the previous
model, here we also impose an additional assumption in the setting of Example and sup-
pose that the distribution of R4 is the same for all d € N. Thus, for every d € N we consider a

random walk (T)) in RY whose increments are given by
xD=rv?, ieN,

where

e (R;){2, are independent copies of a random variable R with [ER = 0 and ER? = 1.

. (Vi(d));.’i1 are i.i.d. random vectors uniformly distributed on {ey, ..., e;}, the standard or-

thonormal basis of R?. That is to say,
PV =e]=1/d, ieN, je(l,...,d}
e (R;);2, and (Vi(d));?zl are independent.
This model is related to an experiment in which n balls are independently placed into d

equiprobable boxes. If the i-th ball is placed into box j, then the i-th increment of the ran-

dom walk is equal to R;e;.

Theorem 3.6. In the setting just described suppose that ER* < co.
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(@) Iflimy_,,n/d =0, then

()2 _
ISw =1 w0, var (R2))
\/E d—oo
(b) Iflimy_,,, n/d = oo, then
(d)12 _
ISw "=m v \i0,1).
2n2/d d—oo
(c) If n ~ yd for some constant y € (0, 0), then

(d)2 _
M N N(0,2y+Var(R2)).

\/ﬁ d—oo

In the case when R? belongs to the domain of attraction of an a-stable distribution with
a € (1,2), the conclusion is identical to that of Theorem

Theorem 3.7. If (8) holds in the setting of Model 3, then the same conclusions as in Theorem
apply.

Note that the conclusions of Theorems [3.3|and [3.6] are almost identical, the only difference
being that the latter does not provide a precise answer in the case of deterministic R in the
regime lim,_, ., n/d = 0, since the limit in Part (a) is then degenerate. The next theorem gives a

more precise result in this case. Without loss of generality, we assume that R?> = 1. The latter
(d)

in conjunction with [ER = 0 implies that (S; ');2, must be the simple symmetric random walk.

Theorem 3.8. Let (S;d));?io be the simple symmetric random walk on Z? starting at 0.

(a) If n = o(Vd), then limy_, . P[|ISWV|? = n] = 1.
(b) If n ~ c\/ﬁfor some constant ¢ € (0, 00), then

Isi NP = n 25 3PP,
where P’ and P” are independent Poisson random variables with mean c*/4.
(c) Iflimy_, n/Vd = oo, then

(d)2 _
ISn II*~m =5 N(0,1).

4. Proors oF THE GROMOV-HAUSDORFF CONVERGENCE

The remaining part of the paper is devoted to proofs. In this section we prove Theorems
and
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4.1. Functional law of large numbers for the norm. We begin with a result whose proof con-
tains the main idea of the proof of Theorem

Theorem 4.1. Let n = n(d) be an arbitrary sequence of positive integers such that n(d) — oo, as
d — oco. Under the assumptions (a)—(d) of Section

Isg > | s
(9) sup [———t| — 0,
te[O,l] n d—)OO

P . .
where — denotes convergence in probability.

Before giving the proof of Theorem [4.1|some preparatory work has to be done. First, observe
that, for every k € IN,

d d d d d d d d d

(10) 512 =¢85 = (17 e 0 X e (Y = 10 1 Q)
where

k

@ ._ (d)2 @ ._ (d) ()

(11) V=) I Q= ) (X, keN,

i=1 i,jell,...k}

i#]

and Téd) =0, Qf)d) := 0. Further, note that

d d d d d
(12) Q;():ZZY.( Lov! = x\ sy,

It will be of major importance for what follows that (Q;d))nelNo is a martingale. More pre-

cisely, the following holds true.

Lemma 4.2. For any d-dimensional random walk with i.i.d. zero-mean increments Xﬁd),...,X,(qd),

the random variables Yl(d),..., Yy(ld) form a triangular array of martingale differences with respect to
the natural filtration ﬂ(d) C--C ]-}l(d), where ]-"i(d)

iefl,...,n}.

is the o-algebra generated by XY”,...,X;d),for all

Proof. To prove the martingale difference property observe that Yi(d) is ]-;(d)—measurable and
d
@] _ (d) o (d)
};71] = ZIE [Xi,j Sic1,j
j=1

i,j is .ﬁ&ﬁ)—measurable and that X

};<_dl) and has zero mean. 0

(@] (@) @ (@)
IE[Y. 'Pfl]:IE[(Xi ;s\

1 1

740

foralli=1,...,n, where we used that S;d l(tj) is independent of
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Proof of Theorem To prove (9), it suffices to show that

7@ ,
(13) sup Ll 4| 2 0,
te[0,1] n d—oo
and

(d)
SUPq¢(0,1] |Q|_ntj| R 0

14
( ) n d—oo

Proof of (13). According to a version of the law of large numbers stated in Lemma

falt) =T = an =,

for every t > 0. Since the functions t — f;(t) and t > t are monotone in ¢ € [0,1] and the latter
function is continuous, this convergence in probability is in fact uniform by Pdlya’s extension
of Dini’s theorem. Indeed, for every m € IN the union bound yields

max |fd (i/m) — (i/m)| dL 0.

i=0,.. —00

The monotonicity of t — f;(t) implies that

sup |f4(t) —t|< max |f1(i/m)— (i/m)| + (1/m).
te[0,1] =0,

Given € > 0 we choose m € IN such that 1/m < &/2. Then,

sup |fs(t)—t|>e| <P

max [ (i/m) = (i/m)| > /2| — 0.
te[0,1] ZZO,...,m

d—co

It follows that sup,(g 1)Ifa(t) - t| converges in probability to 0, thus proving (L3).

Proof of (14). Since (Q(gd))ge]N0 is a martingale, for every fixed d € N, Doob’s martingale inequal-
ity entails that

d
|< E(Q))*

[ sup IQWJI > ne -y

te[0,1]

Hence, to prove (14), it suffices to check that

o5 HO Ly |y o ] = ZXIk ] ="

1]6{1 ..... 1]6{1 n) k=
i#] i#]
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An alternative way to see this sufficiency is to apply Corollary 2 on p. 1888 in [6] with ®(x) = x?

and f; j(u,v) =(u,v), leading to the estimate

d d
Yoo x

)2§2O48~IE( Z (X ]2

(tsrp IQMI) (m?f‘..’.(,n

In order to prove (15 we write

d d
_ (d) y(d) 5, (d)(d)
Sy Yy s
i,je{l,...n} k=1 ] '] )
z;t] i#] i'#j

where for the second equality we used that by independence, uncorrelatedness and IEX;? =0,
d)

the expectation ]E[XE?X;,Q,X](. ' X](d,)(] vanishes unless k = k” and {i, j} = {i’, j}. It remains to note
that

(d)\2 (d)\2 (d)y2 _ (d)\2
ZIE k)= kr:r{f.l.).fdlE(Xl’k) ;E(Xl'k) - kH}aXdIE(Xl W0
where (5) has been utilized on the last step. The proof of (15) is complete. O

4.2. Proof of Theorem 2.4, We identify the Wiener spiral W with the interval [0, 1] equipped
with the metric d(t,s) = V|t —s|. Define a surjective map ¢,, : [0,1] —» M, by ¢, (t) := SWJ/\/_
By Corollary 7.3.28 on page 258 of [3]], the Gromov-Hausdorff distance between W and My is
bounded above by twice the distortion of the map ¢,, that is

IS

Il
dgu(W,M,) <2 sup M Y ramp |
0<s<t<1 \n

To prove the theorem, it suffices to verify that

[ P
—————— —Vt-s| — 0.

su
0<s<t<1 Vn d—co

Take some m € IN. We know from Theoremthat, foreveryi=0,...,m-1,

\/ﬁ d—oco m

”S z/m nj” P i
_—
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Moreover, for every integer 0 <i <j<m,

(d)
IIS =S, i/myn)| i —i
]/m n| L(i/m)-n] i) ]—1

\/ﬁ d—o0 m

By the union bound, it follows that, for every fixed m € IN,

sl —
O L ot et Y
0<i<j<m \/ﬁ m |d—co

If 0<s<t<1aresuchthatse [% %) and t €[ / ]H) then, by the triangle inequality,

IS

(@ S @)
oy = SEubll IS Gmyy = S| _ up 1025 ity N 102 = Sty

< sup
Vn Vn zeld, i1 Vn seld, 1] Vn

m’ m m’ m

Consider the random variable

(d
”S|_nzj Ln- (i/m)J”
Wy, = Max sup .

i€{0,...,m— 1}26[1 z+1] \/E

m’ m

To complete the proof, it suffices to show that for every ¢ > 0,

lim limsupP[w,, , > ¢] = 0.
M= J 500

Applying the union bound and recalling that Xid), o ,Xi,d) are i.i.d. we can write

Plw,,, > €] < mP E sup |IS

te(o,

LntJHz >g

Wl]

Recalling decomposition (11)), observe that

2
1S5 I = Tty + QLo

To complete the proof, it suffices to verify that

(16) %glgollznjupmﬂj[TL(/) = nez/Z]
and
- 2
(17) nlglgohmsumeP sup QLntJ > ne /2]
d—oo te[O ]
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Proof of (16). We observe that, for every fixed m € N, TL(:/)mJ/n converges in probability to 1/m
by the version of the law of large numbers stated in Lemma This implies that for every
m>2/e?, the limsup, ,_, in equals 0.

Proof of (17). By yet another appeal to Doob’s martingale inequality we obtain

mlP

(d) 2 m (d) 2
su >ne’/2|< ———E .
te[opl]QLntJ ] (2722 Qi)

As we have already shown in (15)), for every m € N,

(d) 2
E(Q,,/m1)
lim Enfmi”

=0.
d—oo n?

It follows that the limsup,_,, in (17) equals 0 for every m € N. O

Proof of Corollary[2.5] Note that M; ¢ M and

(d)
X:
dep(MY",My) < dy(M$™,My) < max IX; |

ie{l,.,n} \n

The right-hand side converges to zero in probability, since, for every fixed € > 0,

(d)
I1X;l _
P — > | <nP[IXD|? > en] < e 2EBIIXD|? Lyxaypsezn]
i€{l,...,n} \/E
< e 2sup E[IX O 1Lyxoppsezn )
leN
and the latter converges to zero by (4). O

4.3. Proof of Theorem[2.6] The map K 5 t > X;(t) € K, is surjective. Similarly to the proof of
Theorem [2.4) we use Corollary 7.3.28 on page 258 of [3]] to infer that
do(Ka, K) < 2 sup [IXa(s) = Xa(0)] = p(s, )]
ste

To prove the theorem it suffices to show that the right-hand side converges to 0 a.s., that is

| as.
— 0.
d—oo

(18) sup
s,teK

X4 (s) = Xa (£l - +/Var (X(s) - X(t))

The function z — +/z is uniformly continuous on every interval of the form [0,A], with A > 0.
Therefore, for non-negative bounded functions, f, — f uniformly implies that \/]_‘n — \/]_‘
uniformly. Hence, to prove (18), it suffices to check that

(19) lim sup [[IX,(s) = X4(1)]1* = Var (X(s) - X(t)| = 0.

d—00 g teK
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Define i.i.d. stochastic processes (Yi(s, t))s 1ekxk, k € N, by
Yi(s, £) = (Xi(s) = Xi(£))” = B(Xi(s) - Xi(£)?,  (s,t) e K x K.

Note that Y; has continuous sample paths on KxK (endowed with the product metric 3} p. 88])
and that

E sup |Yi(s,t)|<2E sup (Xi(s)-Xi(t)><4E sup (XP(s)+X7(t)) < 8EsupXZ(s) < co.
(s,t)eKxK (s,t)eKxK (s,£)eKxK seK

Then,

X4 (s) — Xq(£)II* = Var (X(s) - X(t)) = Yi(s, ).

1=~

QU=

d
Y (Xils) = Xi(1)? = E(X(5) = X(1)?) = %
k=1

k=1
Note that Y7,Y,,... are i.i.d. random elements in the Banach space C(K x K) of continuous

functions on the compact space K x K. As we have shown, [E||Yy||,, < co. By the strong law of

large numbers in the Banach space C(K x K), see Theorem 1.1 on page 131 in [12]], we have

d

1 a.s.
sup | ) Yi(s,t)| — 0.
(s,t)eKxK d k; d—oo
This proves (19) and completes the proof of Theorem ]

5. PROOFS OF THE DISTRIBUTIONAL LIMIT THEOREMS FOR THE NORM

5.1. General strategy. To prove the results stated in Section 3} recall from (L0), (11), the

decomposition

d d d d d d d d d
1SS == (i, 85y —n = (X 4 X X e xSy = T it QY.
Our aim is to derive distributional limit theorems for the “diagonal sum” T,gd) and the “off-
diagonal sum” Q%d). For the former quantity, this task is usually straightforward since Tn(d) isa
sum of i.i.d. random variables. Suppose that
(d)
T\ _
(20) In M w T,

A0 s

(d)

for a suitable normalizing sequence 7, ' > 0 and some stable random variable T,,. For the

off-diagonal sum, we shall prove, in all three models, a central limit theorem of the form

(d)
Q w, N(0,1).

V2r2)d d—co

(21)
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Having and at our disposal, we can determine the limit distribution of ||S,(qd)||2 — .

Depending on which of the normalizing sequences, T,(qd) or V2n?/d, is asymptotically larger, we

distinguish the following cases.

Cask 1: Off-diagonal fluctuations dominate meaning that ) = o(Vn?/d). Then,

d d d d
IS¥NP-n T -n o Q\¥

w
. + —> N(0,1).
V2n?/d T,(ld) V2n2/d  N2n?/d d—e 1)

Cask 2: Diagonal fluctuations dominate meaning that Vn?/d = O(T,(Zd)). Then,

I51P-n _T-n Q) NEVd w
V2n2/d D N2n2d M e

Cask 3: Both types of fluctuations are of the same order meaning that Van/d/Ti,d) —c€(0,00).

T...

This case is somewhat more difficult and requires a separate analysis.

5.2. Central limit theorem for the off-diagonal sum. In all three models, the proof of the CLT
for Q,(qd) is based on the representation .

To prove a central limit theorem for qud) we are going to apply the martingale central limit
theorem (see Theorem [6.2]of the Appendix) to the martingale differences

Y.
N — i=1,..,n

Cn2/2d)
If the conditions of Theorem [6.2]are satisfied with 02 = 1, then
d
Q) _ A
Van2/d !
In the following two lemmas we simultaneously verify condition of Theorem for all
three models defined in Sections

+---+A51d) di> N(0,1).

d . .. .
( ))"0 with i.i.d. zero-mean increments

Lemma 5.1. Consider a d-dimensional random walk (S;)20
XY”,Xéd),... satisfying
(d)

(22) ElX)x\1=0, BXP=1/d, jke(l,...d), j=k ieN

Then, for all n € N,

-1
d d d 1y d
(23) Dy =) B PIES =5 ) ISP,
] i=1
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and

2n(n—1)

n
d d d
(24) IED,ﬁ):E E(Y")? = . VarQ' = 4ED\ = -

n d d n d d
_ @ d) ld) o d | @] (d) o(d) (d) ()
- ZIE ZZXi,k Xz 0 Sz—l ksz—l €|‘Fz‘fl - ZZSi—l,ksz—l €IE [Xl sz 5]
i=1 k=1 ¢=1 i=1 k=1 €=1
GRCI Wo v @) 15 @)
_ 2 2 2 2
=) ) OB =) ) (P =1) ISR
i=1 j=1 i=1 j=1 i=1

where we used (22). To prove the first equation in (24), take expectation of and observe

that 1E||S§d)||2 = i. To prove the second equation in (24), recall and observe that Y7, Y,id),

being martingale differences, are uncorrelated. O

Lemma 5.2. For a random walk satisfying conditions (a), (c), (d) of Section [2.1|and we have

n (d)
d d D P
> EAIF = s = L

w2/(2d) i
Proof. We know from Theorem [4.1]that
| P
max. |||s 2 - | o
i€{l,..., d—oo

Takmg some ¢ > 0 and denoting by An ) the event that maX;e(1,..n) |||S ||2 —1i| < ne, we have that

IP[An ] — 1 as d — 0. On the event A; )

-1 -1
(@ _ 1 ) l nn—1)+2en(n—-1)
D, =7 E || 7 _El i+ ne) ¥

and the lower bound

-1
@ _1 ) l B n(n—1)—-2en(n-1)
D, =7 E || > E_l i—ne) ¥ .

Taken together, these bounds imply the claim. O

we have the upper bound
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5.3. Model 1: Proofs of Theorems [3.1/and The main difficulty is to prove the following

central limit theorem for QLd).

Proposition 5.3. In the setting of Section suppose that IB|E|**0 < oo, for some & > 0. Then,
(d)
O v, N(0,1).
2n?/d d—eo
Proof. Since condition of the martingale central limit theorem (see Theorem has al-
ready been verified in Lemma it remains to verify Lyapunov’s condition which takes

the form

n .
ZIE'Yi(d)|2+6 _ 0(n2+6/d1+% ),
i=1

where 6 > 0 is such that 1E|§|2+5 < 0. To prove this estimate, it suffices to show that

max E|Y\2* < C(n/d)"+3.
i€{l,...,n}

In the following, C denotes a sufficiently large constant that does not depend on d. Recall from

Section that

d d

d d) o(d 1 1

Yl-( ) = <Xf ),Sf_b = EZEi,j(El,j+"'+éi—1,j) = EZ&‘,M:‘—L]‘,
im1 =1

where we defined 7;_y ; := & j + -+ &;_1 ;. The Rosenthal inequality, see Theorem implies
that

o

d 1+5
ZIE(éi,jﬂi—l,j)z] ,

=1

240

d d
d c 95 _9_s
e e Zéi,jfli—u < Cd™*°max ZIE|5i,j77i—l,j|2+6,
= p

for all i € {1,...,n}. In the following, we estimate both terms appearing on the right-hand side.

For the first term, we first recall that &; ; has finite moment of order (2 +9):

d d
246 246
E[&; j1i-1,]17° < C ZlE|77i—1,j| .
j=1 j=1
For each summand on the right-hand side we use the Rosenthal inequality to obtain
i1 246

) &)
=1

2+6 S [
= < Cmax{i,i'*?} < Cn'*3.

Elni;| =E

Therefore,
d
' s
ZlEl‘Si,jﬂi—l,jPJré <C-d-n'*i,
=1
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To estimate the second term, we observe that IE(éi,jm_l,j)z = IE(;yi_Lj)z =i-1 < n. It follows

that ,
1+

< (dn)'*s.

d
ZIE(éi,jﬁi—Lj)z
=1

Altogether we arrive at
IElYi(d)|2+5 < Cd—Z—é(dn)1+% — C(n/d)1+
which proves the claim. 4

Proof of Theorem By Proposition the off-diagonal sum satisfies

Q" 5 N(0,1).
2n2/d d—eo
To derive a distributional limit theorem for the diagonal sum, we observe that
@ n ) 1 n d
(25) T, —n—;mx P-1=3) Zl

Recall the assumption EE* < co. Applying the classical CLT to the right-hand side of yields

70w
f/n/_d = N(0, Var [£2]).

Since Vn/d = o(V2n?/d), the fluctuations of the off-diagonal sum Qﬁld) dominate. O
Proof of Theorem By and (7), we have
(d) n d
T, —n
d‘l(nd)l/"‘L(nd) (nd) 1/O‘L nd) Z« djo)o Ca:

i=1 ]:1

The normalizing sequence for T,gd) —n is thus T,Sd) = d~Y(nd)V*L(nd). If, for some & > 0 and all
sufficiently large d, n > dzzz%z*é, respectively, n < d%_‘s, then Vn2/d = o(T,(qd)) (meaning that the
fluctuations of T,gd) dominate), respectively, Tild) = o(V2n?/d) (meaning that the fluctuations of
Qizd) dominate).
It is also clear that, in fact, a more precise result has been deduced. Namely, if
lim nV/a1g1/a=1/2 () = 0,

d—oo

then the convergence in Part (a) holds true, whereas if the above limit is equal to +oo, the

convergence in Part (b) holds true. O
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5.4. Model 2: Proofs of Theorems[3.3]and The main difficulty is again to prove the CLT

for the off-diagonal sum.

Proposition 5.4. In addition to the setting of Section suppose that ER?**? < co for some & > 0.
Then,

(d)
Qi v, N(0,1).
2n2/d d—oo

Proof. We again apply the martingale central limit theorem. Condition of Theorem |[6.2]has
been verified in Lemma We shall verify the Lyapunov condition which takes the form

1 - (@) 45, ()] P
26 — = N E(yWpeeE ]—> 0.
26 T M ] P

Recall from Section|3.2|that X; = R; Ul.(d), where R; >0, Ui(d) and Sf

that

i are independent. It follows

d ) d d 5 d d d 5 d
By, P15 = B, S 1E ] = BIGR U, 8D A
S d d S d S d S d
— IE|R|2+b . IE[KUI( ), Sf—i>|2+b|‘2£1)] — IE|R|2+O . |Si(_;|2+b . IEKUl( )’ el>|2+6
< C . d*l*% . |Sl(iii|2+é)

where in the penultimate step we used the isotropy of Ui(d)

. In the last step, we used that
Vd( Ui(d), e1) converges to the standard normal distribution together with all moments [[18, The-
orem 1] and, consequently, IEl(Ul-(d),el)l2+6 < Cd™'"%. For the Lyapunov sum we obtain the

estimate

n

Y ElY PR Z'S 2+,

i=1

We know from Theorem [4.1] that the event
A - { max |||s P - | n}

satisfies lim;_, IP[A(nd)] = 1. So, on the event Asf)

Z;:ll |Sl.(d)|2+‘S < n2+/2) 1t follows that, on Asqd),

we have ||S§d)||2 <2nforalli=1,...,nand

n ) n ) 5 . .
(27) ZIE“Yl(d)|2+b|]:l~(7dl)] <C- d—l—% . lejd)|2+b <C- d—l—% . 1’l2+% — 0((?1/\/3)2-“)).

i=1

This proves (26). O
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Proof of Theorem By the classical CLT and Proposition

o-n TP T (RE-1) v

(28) - N(0, Var[R?)) 5 N(0,1).

w
= = e d y
Vn Vn Vi doe 2n2/d d—oo

Proof of (a): If n/d — 0, then V2n2/d = o(y/n) and (since Var[R?] = 0) the diagonal sum T,id)

dominates.

Proof of (b): 1f n/d — oo, then /n = 0(V2n2/d) and the off-diagonal sum led) dominates. The

same conclusion applies if R =1 is deterministic since then the diagonal sum equals 7.

Proof of (c). The proof in the “critical case” when n ~ yd follows essentially the same idea
as described in Sections and but requires more refined estimates. We start with the

decomposition

(d)
2 _ Y.
e L )

The sequence A(ld),...,A;d) forms a martingale difference since
d d d
BY"|F1] = E[(R? - 1)| %y ]+ ER; - E[U™, S\ DIF_ ] =

where we used that ]E(Ul.(d),x) = 0 for every fixed vector x € R?. The latter relation and
d .
E(U;",x)?] = |Ix|I?/d imply
d d) o(d d) (d
E[(Y;"V21F1] = BI(R? — 1)2] + 4E[R;(R? - 1)JE[(U;", S{%)) |y ]+ 4E[UL", 17217y )

4 .
= Var (R?) + SIS 1

Thus, it follows that
- @D\ £ (d)
ZIE[(Ai ) |};_1] Var (R?) + Znsl P s Var (R) + 2y,
i=1

where we utilized that % " ||S§2||2 converges in probability to 1, which can be verified in
the same way as in the proof of Lemma It remains to check the Lindeberg condition (54)

which takes the following form. For every ¢ > 0,

d—o0

1y ) (@) o(d) @] P
(29) ZZIE[(Ri—1+2Ri(Ui ,81%) 7l = o.
i=1

2
>) Ly, (@) o(d)
{|Ri—1+2R,-(U,- ,si71>|ze\/ﬁ}
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By the estimate (a + b)? < 2a® + 2b? and Markov’s inequality it suffices to verify the following

claims:
1 n
(30) Jim 5 ) B[R =1 T oo = 0
i=1
1 n
im — 2_1)? —
1) dhi?oni: ]E[(Rl b 1{|&<U,-‘“%S§“i>|21e«/ﬁ}] O
1y @) ()
(32) lim — quﬂq ﬁpﬁﬁmﬁqhgﬁdza
i=
1 o2 @) oo @] P
(33) E;«E[Ri<Ui Sip) ]l{|Rz-<de),Sfi>I2i€\/ﬁ} Fii PN 0.

Condition is fulfilled by the monotone convergence theorem since the R;’s are independent

copies of R and ER* < co. To prove the remaining conditions we first observe that
i—1

d) o d) o(d d 1 d
(34) B[, s | [ shsh || = gEIshir = < 2 <c,

n
d

forall i € {1,...,n}. Recall also that R;, U and Sf)l are independent. To prove (31), note that

1

2 2 2 2 2 2
o R R e
d d
<E[(R? = 17 L] + B[R = 12]P[ U, 521> 4],

Both summands on the right-hand side go to 0 (for the second summand this follows from
and Markov’s inequality). To prove condition (32), we note that

(d) o(d)

(d) ¢(d)
= IE[RZZ ]l{lRf—llz%s\ﬁ}] E [(Ui 'Sz’—1>2] <E [R2 ﬂ{IRZ—llz%e\/fz}] C

and observe that the right-hand side goes to 0 as 7 — oo by the monotone convergence theorem.
To prove (33), we argue as follows:

2 (d) o(d)\2
IE[Ri<Ui +Sic1) H{mi(U}d’,S}f’})Iz%e g

d) d
g]E[Rf(Uf ;S;_i)zﬂ{m,—lzienl“}

d d d
£ [R5t

(d)
-

2
) {I(Ui(d),S;fi)|2n1/4}

(d)
)

d d d
< ||Sf_i||2-IE[RZ1{|R|2;£n1/4}]+1E[<U1-( >,s§_i>211{

1
d |<U,-(‘”,s§i’i>|2n”4}
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The expectation of the first summand can be bounded above by CE[R? 1 (IRI>1 env4y] uniformly
over i € {1,...,n}, which goes to 0 by the monotone convergence theorem. To bound the second

summand, we observe that, for every 6 > 0,

1y (d) o(d)\2
EZ{IE|:<UZ ISi—1> ﬂ{|<U, 1>|>nl/4}
1=

‘i] 14 ZIE[KU @)y ppo

5 o
<C-nl1 A% s

(d)]
1

where the last inequality holds on the event A(nd), as we have shown in the proof of Proposi-

tion see formula (27). The right-hand side goes to 0 if n ~ yd, and we have IP[A(nd)] -1,
which completes the verification of and the Lindeberg condition (29). An appeal to the
martingale CLT stated in Theorem [6.2] completes the proof of Part (c). O

Proof of Theorem It follows from (8) and Proposition [5.4] that

(d) 2 2 (d)
T, - Ri+---+R;—n
(35) n —m_ M 1 i C, and Qn = N(0, 1).
nl/aL(n) nl/OCL(n) n—00 \lznz/d d—oo

If, for some & > 0 and all sufficiently large d, we have n > d%2*°, respectively, n < d%27%, then
n/%L(n) = o(V2n2/d), respectively, V2n2/d = o(n'/*L(n)), and the claims of (a) and (b) follow.
A similar observation as at the end of the proof of Theorem [3.2applies here. Namely, if
dhm dl/an/a—lL(n) =0,
then the convergence in Part (a) holds true, whereas if the above limit is equal to +co, then the

convergence in Part (b) holds true. O

Remark 5.5. In the missing critical case of Theorem i.e. when holds and V2n?/d ~

yn!/@L(n) for some constant y € (0, c0), we conjecture that

ISP =n w
21’12/ d—)oo

where N has the standard normal law, N and C, are independent. Let us explain the intuition

behind this conjecture (in fact, similar arguments apply to all cases of Theorems[3.3|and3.5). It

(36) — N+y7lg,

is known, see Theorem 4 in [18], that for every fixed m € IN, the collection of m(m—1)/2 random
variables Vd - ((Ui(d), U;d)>)15i<j5m converges in distribution to a collection of i.i.d. standard

normal variables (N; j)1<j<j<m- This suggests the approximation

37)  1IS)12 —n Z 1)+2 Z R;R (U U hyx ZRZ Z RiR;N; .

i=1 1<i<j<n 1<1<]<n
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Conditionally on Ry, R,,..., the distribution of the second term term is centered normal with

the variance
2 (v Py
_E 2 __E 4
d[.lRl] d.lRl.
1= 1=

By the law of large numbers, ( ?ZlRiz)2 ~ n? as., while Y R? = o(n?) since R? is in the
domain of attraction of an a/2-stable distribution with a/2 > 1/2. Hence, the variance of the
normal distribution is asymptotic to 2n2/d. We see that the fluctuations of the first term on the
right-hand side of are determined by the R;’s, while the fluctuations of the second term
are determined by the N; ;’s only. Hence, these fluctuations are asymptotically independent.
Recalling (8) for the first term, we arrive at (36).

5.5. Model 3: Proofs of Theorems|[3.6}[3.7,[3.8] The random walk described in Model 3 can be
coupled with the classical allocation scheme [15] in which #n balls are independently dropped
into d equiprobable boxes. Each time a random walk makes a jump along the line spanned by
the basis vector ¢;, we drop a ball into the box with the number j. Let

l
ki(0) = Z]l{vim:ej}
i=1

1

be the number of balls in box j € {1,...,d} after £ € IN balls have been placed into boxes. Let
(Rj;j)i jen be independent copies of the random variable R and consider independent random
walks (Z;j)ken,, j € N, defined by

Zk;j = Rl;j+"'+Rk;jf ZO;j =0, kGN, ]EN
Then, it follows from the definition of Model 3 given in Section that
d d d), d
(38) S = (S S £ (Zi st s Ziytsa)-

In particular, this shows that ||S,(ld)||2 is a particular case of the so-called randomized decompos-
able statistics whose limit behaviour has been extensively studied. A survey on this topic with
pointers to the original literature including [5] and the thesis of S. I. Bykov [4] can be found
in [17]). It would be possible to prove most of Theorems and by verifying the (quite
technical) conditions of Theorems 1.2.1 and 1.3.1 in [17]] (which are due to S. I. Bykov), but we
prefer to give independent proofs since these are quite simple. We begin with a CLT for the

off-diagonal sum.
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Proposition 5.6. In addition to the setting of Section suppose that BR?**0 < oo and n/\d — .
Then,

(d)
SR N(0,1).
2n2/d d—

Proof. We again apply the martingale central limit theorem; see Theorem|[6.2} Its condition
has been verified in Lemma It suffices to verify the Lyapunov condition which takes

the form
n o
(39) ZIEllfi(d)|2+5 — 0(1’12+6/d1+%),
i=1
where 6 > 0 is such that ER?*® < co. Without loss of generality we assume that 6 < 2.
Leti€{1,...,n} be fixed. By definition of our model, see Section

d 5 d d S S d d S
1E|Yl( )|2+b — IEKRI ‘/1( ), 557;>|2+b — IE|R|2+6 . IEK‘/I( )’ S;ii>|2+b

d

5 1 d ~ ~ d - d ~

= EIRP™- - ) EIS\) |70 = IR -EIS() [ = C-EIs\") | [**?,
=1

d

d

)1 = (Sf i’l,...,S(di ;) for the components of Sfi. In view of

where we recall the notation Sf i

d .
E[S\)) 120 = B|Zy, 1)1 P < CE(ky (i - 1))+,

where we used Rosenthal’s inequality in the last estimate. Taking everything together, we

arrive at

n J ] n—1 p ) n—1 s
(40) Y EY e <c Y BIS <Y Bk (i)

i=1 i=0 i=1
Note that k(i) has a binomial distribution Bin(7, 1/d). We claim that, for all i,d € IN and 6 €
(0,2],
(41) E(k, ()'*2 < C-(i/d) + C - (i/d)**2.
Observe that [Ek; (i) = i/d. Using the inequality |a + bl”g < 26/2(|a|1+g + |b|1+%), we obtain

E(ky (i))'*2 = Elk, (i) — i/d + i/d]"*2 < 22 Bk (i) - i/d|"* + 292(i/d)'*3.

We can write ky (i) —i/d = €1 +---+ ¢€;, where €1,...,¢; are zero-mean i.i.d. with P[¢; =1-1/d] =
1/d, Ple; =—1/d] =1-1/d. By Corollary 8.2 on p. 151 of [10]], we have

Elk, (i) — i/d|'*3 = Ele; +---+¢;|'*3 < Cile,|'*3 < Ci/d.
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n—1

This proves Now we can complete the proof of as follows. By (40) and (41),

Znaw 2+ < C. Y (ki) NE < Cons ((n/d) + (n/d)1*3) = C
i=1 =

n? 2t p2+o
i=1 o (7 lerg ] ( ;
by the assumption 1#/Vd — co. The proof of is complete

Proof of Theorem By the classical CLT

(42)

7 \/_ZIIX Pon=LY

\rZ(RZ 1)

—> N(0,Var [R?]).
p —00

Proof of (a). If n/d — 0, then Lemmayields Var ngl 2n(n—1)/d = o(n) and hence
ISk 1P - _ T,i"’—n Qi 2n(n—1)/d
i

—> N(0, Var R?
\/ﬁ d—oo ( [ ])
therein

2n(n—1)/

o
d1+§

Note that we did not use Proposition In particular, we do not need assumptions imposed

ISP-n T-n v Q)
V2n2/d

= — N(0,1).
Vno N2n2/d \/2n2/d ane
Proof of (c). The starting point is the decomposition

(d)
5 2_ Y.
” 1 ” n 2 ﬁl ) ﬁg‘d) —

Proof of (b). If n/d — oo, then n/\d — oo and we can apply Proposmon resulting in
(

1

(d)._ p2 (d
W, Yi = Ri —1+2Ri<V-

(d)

S
The sequence A(ld) )

e ,A;d forms a martingale difference since
d
ElY"\ %=

d
= E[(R? — 1)|F_, ]+ 2ER,; - E[(V\"

d
’ Sl(_; >|f1.71] =0,
where we used that [ER; = 0. Next we observe that

d d d d
EI(Y "Y1 1] = E[(R? 1))+ 4E[R; (R} ~ DBV, ", SEDIF 1+ 4BV, ", 1)1 )
d d 4
- Var(Rz) +4ER® . — s LS )+ EHS}_{ 2,
where we used that IE(V.(d),x) = %(xl + -+ +x4) and IE(Vi(d),x)2 = ||x||?/d for each fixed vector
x=(x1,...,x5) € RY.

|

25
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Let us check that

1 & (d P
(43) dn D) S0
i=1 j=1
Indeed,
d n d i-1 n i-1 n-1
1 v @ 1 1 1
a2 S = aa ) el =0 Re= 7, 2_(n=kIRs,
i=1 j=1 i=1 j=1 k=1 i=1 k=1 k=1

and the right-hand side converges to zero in probability by Chebyshev’s inequality, since the
variance of the right-hand side is O(n3/(nd)?) = O(1/d).
Formula together with the fact that % " ||Sfiii||2 converges in probability to 1, which

can be verified in the same way as in the proof of Lemma yield

n 2 n_d n
@)\ £(d) 2 3 @ . 4 (@2 P 2
ZIE[(Ai ) |J-;_1] Var (R2) + 4ER3 - ZZ ]+EZ”Si—1” 5 Var(R?)+27.
i=1 =1 j=1 i=1
It remains to verify the following Lindeberg condition that implies (54). For every € > 0,

1 v 2
(44) lim =~ E[(R3—1+2Ri<\/i(d’,sﬂ>) 1

d) o(d =0.
{|R,.271+2R,-<V,.‘ ’,s}{>|zsx/ﬁ}]

The proof proceeds by the same method as in the proof of Theorem (c) with the following
modifications. The analogues of (30), (31), (with Ui(d) replaced by Vz.(d)) can be established
in the same way as above upon replacing by

d) (d d) (d d 1 d i—1
(45) IE[(VZ.( ) s}_b?] _ IE[IE[(VZ.( %s}_bﬂs}_{” = Bl = " <

Instead of we verify the following condition:

1 v d
(46) Jim = 1E[R2<V sy
i=1

=o.
{|Rl-<vi<‘”,s§"i>|z;s\/ﬁ}]

Take some 6 > 0. Then,

1 v 2/7@ cld)y2
;;E[RK‘G Si1) Il{|R,-<V,- SV f‘f}
1=

(o) Dz[uz AT

14 ZIE[KV S

o

1o [(n? n?t2

<C-n 72—+ 5
d d1+2
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where the last inequality was established in the proof of Proposition The right-hand side
converges to 0 in the regime when n ~ yd, which proves and completes the verification of
the Lindeberg condition (44). Thus, Part (c) follow by another appeal to Theorem O

Proof of Theorem By (8), we have

7Y
(47) e
nl/@L(n) d—oo

-n w

Ca-

Proof of (a). If n > d7=2*? for some 6 > 0 and all sufficiently large d, then we also have n/d — co
since a € (1,2). Hence, Proposition applies and Q,(qd) satisfies a CLT with normalization
V2n2/d. We have n'/*L(n) = o(V2n2/d), meaning that the off-diagonal fluctuations dominate,

and the claim follows.

Proof of (b). If n < d=z7% for all sufficiently large d, then Var Q,(qd) = 2n(n-1)/d by and
2n(n—-1)/d = o(n"/*L(n)). It follows that

IiiP=n _ T-n Qi) m(e-1yd .
n/eL(n) — neL(n)  \2u(n—-1)/d nY*L(n) d-e "
which proves the claim. O

Proof of Theorem[3.8} Proof of (a): If n = o(Vd), then by a well-known result on the birthday
problem (see, e.g., Example 3.2.5 in 7] or p. 42 in [15]), the probability that no box contains
> 2 balls (equivalently, that the vectors Vl(d),..., Vrsd) are pairwise different) converges to 1. On

this event, we evidently have ||S,(fl)||2 =n.

Proof of (b): Using the notation introduced at the beginning of the present Section we can

write

d d d
(d))2 2 2 2
(48) 1Sn 117 = szj(n);j = szj(n);j ﬂ{kj(")23} + szj(n);j I[{kj(”)SZ}‘
j=1

j=1 j=1

Let us show that the first sum (which is the total contribution of the boxes containing at least

3 balls) converges in distribution to 0. The expectation of this term is given by

d

2
2 : Zic (g Mk (n)23)
]:

E = dE[Z] 1 s> = ) B[ZE; L] =d ) KP[ki(n) = K]
k=3 k=3
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Using that k;(n) has a binomial distribution Bin(n,1/d) and that n < 2cVd for sufficiently large

d, we can write

d . .
2 - E n) 1 - n 1
(49) E szj(n)}j ]l{kj(n)ZS}} =d k(k)ﬁ( - —) <d E T
j=1 k=3 .
. (26\/_ 1 0 »
< T <
=4 ; Y k§ cd”?,

which converges to 0, as d — co. Let us now analyze the second sum in (48). For each k € N
let pp(n) := Zf 1 Il{k (n)=k} be the number of boxes containing k balls. It is known, see Example 2
on pp. 14-15 in [1] or Theorems 3, 5 on pp. 67—68 in [15], that in the regime when n ~ cVd
with ¢ € (0, ),

(50) par(n) —> Poi(c?/2).

d—oo
The number of boxes containing at least 3 balls is denoted by

00 d

pealn)i= ) pu(n)

k=3 =1

Il
=
F
=
%
2

Almost the same estimate as in (49) shows that [Eys3(n) — 0 and hence ps3(n) — 0 in prob-
ability. If some box j contains 1 ball, then the corresponding contribution le;j is 1. If some
box j contains 2 balls, then Zzz;j is either (1+1)> =(-1-1)>=4or (+1-1)> = (-1 +1)*> =0,
both possibilities having probability 1/2. Denoting by #11,15,... i.i.d. random variables with
P[1y = 4] = P[1, = 0] = 1/2, we can write

d pa(n) pa(n)
d
(51) ZZ;%.(”);]- Lk (<) =1 = pr(n) + Z Ne—n= Z Ne — po(n) — px3(n Z e —1) = p=3(n).
o1 =1 =1

Since the random variables 77, — 1 take values 3 and —1 with probability 1/2 each and since
pi2(n) converges in distribution to Poi(c?/2) by (50), it follows that the right-hand side of
converges in distribution to 3P’ — P”, where P’,P” are independent and both have a Poisson

distribution with parameter c?/4.

Proof of (c): For the simple random walk, the diagonal sum is deterministic: T,id) =n. If n/\d —

o0, then the off-diagonal sum Q;d) satisfies a CLT by Proposition and the claim follows. [J
6. APPENDIX

In the present section we collect some facts that have been used in our proofs.
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6.1. A law of large numbers. In Section |4/ we used the following version of the weak law of

large numbers for triangular arrays.

Lemma 6.1. Assume that (04 ;)icN, for every d € IN, is a sequence of independent copies of a random
variable 6. Suppose that EO; =1 for all d € IN, and the family (0;),cN is uniformly integrable.

Then, for every integer sequence n = n(d) such that n(d) — oo, as d — oo,

Proof. The proof is standard and goes along the same lines as the proof of Theorem on p. 105

in [9]. Put 6,,(n) := 6,4, 1y, ,<n) and note that

n n
H’{Zf@d,i * Z{Qd,i(”)} <nlP{|04] 2 n} < IE(|9d| ]l{|6d|2n}) < ZEHI\JIIE(I%I ﬂ{|6d|2n})-
i= i=

The left-hand side converges to zero, as n — oo, by the definition of the uniform integrability
of the family (6;),cn- By the same reasoning,

n

lim + Zmed,i(n) -1

i=1

Thus, by Chebyshev’s inequality, it remains to show that

1 n
Var E,Z@d'i(”)] — 0, d— oo
i=1
Clearly, it suffices to check
EO2(n
(52) lim 2 _ 0.
d—oo n

Observe that by Fubini’s theorem

Y n
IEQ;(n) = 2J[0,n] (J;) sds)IP{lel edy} = ZJO s(js,n] P{|6 4] € dy})ds

n

n n
< 2J sIP{|6,4] > s}ds < 2J (|64l ]l{|9d|25})ds < 2j sup E (104110, (>s) ) ds.
0 0 0 delN

Thus, follows by an appeal to L’'Hopital’s rule. O
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6.2. Martingale central limit theorem. In Section[5|we used a central limit theorem for mar-
tingale triangular arrays which can be found in [8, Theorem 2] and, in a slightly less gen-
eral setting, in [2, Theorem 2]. To state it, we need some notation. For every d € N, let
gg"” - g(l"” Cc---C g,(f” be a filtration on a probability space (Q,G,P), where n = n(d) is a se-
quence of positive integers such that n(d) — oo, as d — co. The random variables Tl(d),...,T,;d)
are said to form an array of martingale differences if 'Y'i(d) is g;d)—measurable and IE['Y;(d)lgf)l] =0
for all i = 1,...,n. The following result [8, Theorem 2] provides sufficient conditions under

which the CLT holds for the random variables Tl(d) et Tn(d).

Theorem 6.2. In the setting just described, assume that the following conditions hold:

(a) The variables Tl(d),...,T,id) have finite second moments and

(53) ilE >(Ti(d))z
i1 L

(b) For every € >0,

(54) iIE —(T}‘”)Z 1 (1)
i=1 L L

Then, Tl(d) +ot Tn(d) converges weakly to the normal distribution N(0,02), as d — co.

4)
Gi-1

]Lo.

d—o0

The Lindeberg-type condition stated in follows from the following Lyapunov-type con-

dition: for some 6 > 0,

(55) im[(ﬁd))m
i=1

d P
gg_;] Lo

To prove this implication, observe that (Ti(d))2 ]l{m(d)l>g} < e‘é(Ti(d))zJ“S. Note also that, by the
Markov inequality, condition follows from
n (d)2+6
(56) lim E[(Tl. ) ] —0.
d—oo £

6.3. Rosenthal inequality. In Section [5|we frequently used the following Rosenthal inequal-
ity; see Theorem 9.1 on p. 152 in [10].

Theorem 6.3. For every o > 0 there is a universal constant B = B(9) such that the following holds:
If Zy,...,2, are independent random variables with IE[Z;] = 0 and IE[|Z]-|2+5] <ocoforallj=1,...,d,

then
2+0

d (2+96)/2
2+0
E|) 7| <Bmax ;IE|Z]-| ,
]:

d
)_FiZ]]
j=1




RANDOM WALKS IN THE HIGH-DIMENSIONAL LIMIT I 31

If the random variables Zy,...,Z; are identically distributed, then the Rosenthal inequality
yields

2+6
d
(57) E sz SBmax{d-IE|zl|2+5,(d1E[zf]

=1

)(2+5)/2} S Cdl+%,

for all d € N, with a constant C depending only on the distribution of Z; and 6. Alternatively,
this inequality follows from Corollary 8.2 on page 151 in [L0].
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